Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress

© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 232(2021), 1 vom: 24. Okt., Seite 440-455
1. Verfasser: Jiang, Zhao (VerfasserIn)
Weitere Verfasser: Tu, Haifu, Bai, Baowei, Yang, Chenghai, Zhao, Biquan, Guo, Ziyue, Liu, Qian, Zhao, Hu, Yang, Wanneng, Xiong, Lizhong, Zhang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't GWAS deep convolutional neural networks (DCNNs) drought stress leaf-rolling score plant water content unmanned aerial vehicle (UAV)
LEADER 01000naa a22002652 4500
001 NLM327130334
003 DE-627
005 20231225200109.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.17580  |2 doi 
028 5 2 |a pubmed24n1090.xml 
035 |a (DE-627)NLM327130334 
035 |a (NLM)34165797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Zhao  |e verfasserin  |4 aut 
245 1 0 |a Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.09.2021 
500 |a Date Revised 09.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. 
520 |a Accurate and high-throughput phenotyping of the dynamic response of a large rice population to drought stress in the field is a bottleneck for genetic dissection and breeding of drought resistance. Here, high-efficiency and high-frequent image acquisition by an unmanned aerial vehicle (UAV) was utilized to quantify the dynamic drought response of a rice population under field conditions. Deep convolutional neural networks (DCNNs) and canopy height models were applied to extract highly correlated phenotypic traits including UAV-based leaf-rolling score (LRS_uav), plant water content (PWC_uav) and a new composite trait, drought resistance index by UAV (DRI_uav). The DCNNs achieved high accuracy (correlation coefficient R = 0.84 for modeling set and R = 0.86 for test set) to replace manual leaf-rolling rating. PWC_uav values were precisely estimated (correlation coefficient R = 0.88) and DRI_uav was modeled to monitor the drought resistance of rice accessions dynamically and comprehensively. A total of 111 significantly associated loci were detected by genome-wide association study for the three dynamic traits, and 30.6% of them were not detected in previous mapping studies using nondynamic drought response traits. Unmanned aerial vehicle and deep learning are confirmed effective phenotyping techniques for more complete genetic dissection of rice dynamic responses to drought and exploration of valuable alleles for drought resistance improvement 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a GWAS 
650 4 |a deep convolutional neural networks (DCNNs) 
650 4 |a drought stress 
650 4 |a leaf-rolling score 
650 4 |a plant water content 
650 4 |a unmanned aerial vehicle (UAV) 
700 1 |a Tu, Haifu  |e verfasserin  |4 aut 
700 1 |a Bai, Baowei  |e verfasserin  |4 aut 
700 1 |a Yang, Chenghai  |e verfasserin  |4 aut 
700 1 |a Zhao, Biquan  |e verfasserin  |4 aut 
700 1 |a Guo, Ziyue  |e verfasserin  |4 aut 
700 1 |a Liu, Qian  |e verfasserin  |4 aut 
700 1 |a Zhao, Hu  |e verfasserin  |4 aut 
700 1 |a Yang, Wanneng  |e verfasserin  |4 aut 
700 1 |a Xiong, Lizhong  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 232(2021), 1 vom: 24. Okt., Seite 440-455  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:232  |g year:2021  |g number:1  |g day:24  |g month:10  |g pages:440-455 
856 4 0 |u http://dx.doi.org/10.1111/nph.17580  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 232  |j 2021  |e 1  |b 24  |c 10  |h 440-455