A preliminary analysis of AI based smartphone application for diagnosis of COVID-19 using chest X-ray images

© 2021 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Expert systems with applications. - 1999. - 183(2021) vom: 30. Nov., Seite 115401
Auteur principal: Rangarajan, Aravind Krishnaswamy (Auteur)
Autres auteurs: Ramachandran, Hari Krishnan
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Expert systems with applications
Sujets:Journal Article COVID-19 Chest X-rays Convolutional Neural Network Deep learning GAN Smartphone application
LEADER 01000caa a22002652c 4500
001 NLM326966560
003 DE-627
005 20250301225426.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2021.115401  |2 doi 
028 5 2 |a pubmed25n1089.xml 
035 |a (DE-627)NLM326966560 
035 |a (NLM)34149202 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rangarajan, Aravind Krishnaswamy  |e verfasserin  |4 aut 
245 1 2 |a A preliminary analysis of AI based smartphone application for diagnosis of COVID-19 using chest X-ray images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Elsevier Ltd. All rights reserved. 
520 |a The COVID-19 outbreak has catastrophically affected both public health system and world economy. Swift diagnosis of the positive cases will help in providing proper medical attention to the infected individuals and will also aid in effective tracing of their contacts to break the chain of transmission. Blending Artificial Intelligence (AI) with chest X-ray images and incorporating these models in a smartphone can be handy for the accelerated diagnosis of COVID-19. In this study, publicly available datasets of chest X-ray images have been utilized for training and testing of five pre-trained Convolutional Neural Network (CNN) models namely VGG16, MobileNetV2, Xception, NASNetMobile and InceptionResNetV2. Prior to the training of the selected models, the number of images in COVID-19 category has been increased employing traditional augmentation and Generative Adversarial Network (GAN). The performance of the five pre-trained CNN models utilizing the images generated with the two strategies has been compared. In the case of models trained using augmented images, Xception (98%) and MobileNetV2 (97.9%) turned out to be the ones with highest validation accuracy. Xception (98.1%) and VGG16 (98.6%) emerged as models with the highest validation accuracy in the models trained with synthetic GAN images. The best performing models have been further deployed in a smartphone and evaluated. The overall results suggest that VGG16 and Xception, trained with the synthetic images created using GAN, performed better compared to models trained with augmented images. Among these two models VGG16 produced an encouraging Diagnostic Odd Ratio (DOR) with higher positive likelihood and lower negative likelihood for the prediction of COVID-19 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Chest X-rays 
650 4 |a Convolutional Neural Network 
650 4 |a Deep learning 
650 4 |a GAN 
650 4 |a Smartphone application 
700 1 |a Ramachandran, Hari Krishnan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 183(2021) vom: 30. Nov., Seite 115401  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:183  |g year:2021  |g day:30  |g month:11  |g pages:115401 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2021.115401  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 183  |j 2021  |b 30  |c 11  |h 115401