A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction

This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this methodology are benchmarked using a range of test cases and demonstrated using large-scale models of biomedical FSI....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 443(2021) vom: 15. Okt.
1. Verfasser: Kolahdouz, E M (VerfasserIn)
Weitere Verfasser: Bhalla, A P S, Scotten, L N, Craven, B A, Griffith, B E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Fluid-structure interaction clot transport immersed interface method immersed methods inferior vena cava low density ratios mechanical heart valve rigid body dynamics
LEADER 01000naa a22002652 4500
001 NLM326965181
003 DE-627
005 20231225195729.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2021.110442  |2 doi 
028 5 2 |a pubmed24n1089.xml 
035 |a (DE-627)NLM326965181 
035 |a (NLM)34149063 
035 |a (PII)110442 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kolahdouz, E M  |e verfasserin  |4 aut 
245 1 2 |a A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this methodology are benchmarked using a range of test cases and demonstrated using large-scale models of biomedical FSI. The numerical approach developed herein, which we refer to as an immersed Lagrangian-Eulerian (ILE) method, integrates aspects of partitioned and immersed FSI formulations by solving separate momentum equations for the fluid and solid subdomains, as in a partitioned formulation, while also using non-conforming discretizations of the dynamic fluid and structure regions, as in an immersed formulation. A simple Dirichlet-Neumann coupling scheme is used, in which the motion of the immersed solid is driven by fluid traction forces evaluated along the fluid-structure interface, and the motion of the fluid along that interface is constrained to match the solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical method, we adopt a penalty approach that approximately imposes the no-slip condition along the fluid-structure interface. In the coupling strategy, a separate discretization of the fluid-structure interface is tethered to the volumetric solid mesh via stiff spring-like penalty forces. Our fluid-structure coupling scheme relies on an immersed interface method (IIM) for discrete geometries, which enables the accurate determination of both velocities and stresses along complex internal interfaces. Numerical methods for FSI can suffer from instabilities related to the added mass effect, but the computational tests indicate that the methodology introduced here remains stable for selected test cases across a range of solid-fluid density ratios, including extremely small, nearly equal, equal, and large density ratios. Biomedical FSI demonstration cases include results obtained using this method to simulate the dynamics of a bileaflet mechanical heart valve in a pulse duplicator, and to model transport of blood clots in a patient-averaged anatomical model of the inferior vena cava 
650 4 |a Journal Article 
650 4 |a Fluid-structure interaction 
650 4 |a clot transport 
650 4 |a immersed interface method 
650 4 |a immersed methods 
650 4 |a inferior vena cava 
650 4 |a low density ratios 
650 4 |a mechanical heart valve 
650 4 |a rigid body dynamics 
700 1 |a Bhalla, A P S  |e verfasserin  |4 aut 
700 1 |a Scotten, L N  |e verfasserin  |4 aut 
700 1 |a Craven, B A  |e verfasserin  |4 aut 
700 1 |a Griffith, B E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 443(2021) vom: 15. Okt.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:443  |g year:2021  |g day:15  |g month:10 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2021.110442  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 443  |j 2021  |b 15  |c 10