Robust Isometric Non-Rigid Structure-From-Motion

Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from keypoint correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors. This prevents one to use automatically establ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 16. Okt., Seite 6409-6423
1. Verfasser: Parashar, Shaifali (VerfasserIn)
Weitere Verfasser: Pizarro, Daniel, Bartoli, Adrien
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32680885X
003 DE-627
005 20231225195410.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3089923  |2 doi 
028 5 2 |a pubmed24n1089.xml 
035 |a (DE-627)NLM32680885X 
035 |a (NLM)34133273 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parashar, Shaifali  |e verfasserin  |4 aut 
245 1 0 |a Robust Isometric Non-Rigid Structure-From-Motion 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from keypoint correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors. This prevents one to use automatically established correspondences, which are prone to errors, thereby strongly limiting the scope of NRSfM. We propose a three-step automatic pipeline to solve NRSfM robustly by exploiting isometry. Step (i) computes the optical flow from correspondences, step (ii) reconstructs each 3D point's normal vector using multiple reference images and integrates them to form surfaces with the best reference and step (iii) rejects the 3D points that break isometry in their local neighborhood. Importantly, each step is designed to discard or flag erroneous correspondences. Our contributions include the robustification of optical flow by warp estimation, new fast analytic solutions to local normal reconstruction and their robustification, and a new scale-independent measure of 3D local isometric coherence. Experimental results show that our robust NRSfM method consistently outperforms existing methods on both synthetic and real datasets 
650 4 |a Journal Article 
700 1 |a Pizarro, Daniel  |e verfasserin  |4 aut 
700 1 |a Bartoli, Adrien  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 16. Okt., Seite 6409-6423  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:16  |g month:10  |g pages:6409-6423 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3089923  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 16  |c 10  |h 6409-6423