The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 18 vom: 30. Sept., Seite 6611-6627
1. Verfasser: Yang, Jun (VerfasserIn)
Weitere Verfasser: Ji, Lingxiao, Liu, Shuang, Jing, Pei, Hu, Jin, Jin, Deming, Wang, Lingqiang, Xie, Guosheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CCaMK CaM MAPKK lateral root growth rice salt stress Calmodulin Indoleacetic Acids mehr... Calcium-Calmodulin-Dependent Protein Kinases EC 2.7.11.17
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Ca2+/calmodulin (CaM)-dependent protein kinases (CCaMKs) and mitogen-activated protein kinase kinases (MAPKKs) are two types of kinases that regulate salt stress response in plants. It remains unclear, however, how they cooperatively affect lateral root growth under salt stress. Here, two conserved phosphorylation sites (S102 and T118) of OsCaM1 were identified, and found to affect the ability to bind to Ca2+in vitro and the kinase activity of OsCCaMK in vivo. OsCCaMK specifically interacted with OsMKK1/6 in a Ca2+/CaM-dependent manner. In vitro kinase and in vivo dual-luciferase assays revealed that OsCCaMK phosphorylated OsMKK6 while OsMKK1 phosphorylated OsCCaMK. Overexpression and antisense-RNA repression expression of OsCaM1-1, and CRISPR/Cas9-mediated gene editing mutations of OsMKK1, OsMKK6, and OsMKK1/6 proved that OsCaM1-1, OsMKK1, and OsMKK6 enhanced the auxin content in roots and lateral root growth under salt stress. Consistently, OsCaM1-1, OsMKK1, and OsMKK6 regulated the transcript levels of the genes of this cascade, and salt stress-related and lateral root growth-related auxin signaling under salt stress in rice roots. These findings demonstrate that the OsCaM1-associated OsCCaMK-OsMKK1/6 cascade plays a critical role in recruiting auxin signaling in rice roots. These results also provide new insight into the regulatory mechanism of the CaM-mediated phosphorylation relay cascade to auxin signaling in lateral root growth under salt stress in plants
Beschreibung:Date Completed 20.10.2021
Date Revised 31.05.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab287