Probing the Conformational States of a pH-Sensitive DNA Origami Zipper via Label-Free Electrochemical Methods

DNA origami structures represent an exciting class of materials for use in a wide range of biotechnological applications. This study reports the design, production, and characterization of a DNA origami "zipper" structure, which contains nine pH-responsive DNA locks. Each lock consists of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 25 vom: 29. Juni, Seite 7801-7809
1. Verfasser: Williamson, Paul (VerfasserIn)
Weitere Verfasser: Ijäs, Heini, Shen, Boxuan, Corrigan, Damion K, Linko, Veikko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DNA, Single-Stranded Gold 7440-57-5 DNA 9007-49-2
Beschreibung
Zusammenfassung:DNA origami structures represent an exciting class of materials for use in a wide range of biotechnological applications. This study reports the design, production, and characterization of a DNA origami "zipper" structure, which contains nine pH-responsive DNA locks. Each lock consists of two parts that are attached to the zipper's opposite arms: a DNA hairpin and a single-stranded DNA that are able to form a DNA triplex through Hoogsteen base pairing. The sequences of the locks were selected in a way that the zipper adopted a closed configuration at pH 6.5 and an open state at pH 8.0 (transition pKa 7.6). By adding thiol groups, it was possible to immobilize the zipper structure onto gold surfaces. The immobilization process was characterized electrochemically to confirm successful adsorption of the zipper. The open and closed states were then probed using differential pulse voltammetry and electrochemical impedance spectroscopy with solution-based redox agents. It was found that after immobilization, the open or closed state of the zipper in different pH regimes could be determined by electrochemical interrogation. These findings pave the way for development of DNA origami-based pH monitoring and other pH-responsive sensing and release strategies for zipper-functionalized gold surfaces
Beschreibung:Date Completed 05.07.2021
Date Revised 17.07.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01110