Fast Weakly Supervised Action Segmentation Using Mutual Consistency

Action segmentation is the task of predicting the actions for each frame of a video. As obtaining the full annotation of videos for action segmentation is expensive, weakly supervised approaches that can learn only from transcripts are appealing. In this paper, we propose a novel end-to-end approach...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 14. Okt., Seite 6196-6208
1. Verfasser: Souri, Yaser (VerfasserIn)
Weitere Verfasser: Fayyaz, Mohsen, Minciullo, Luca, Francesca, Gianpiero, Gall, Juergen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM326735259
003 DE-627
005 20231225195234.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3089127  |2 doi 
028 5 2 |a pubmed24n1089.xml 
035 |a (DE-627)NLM326735259 
035 |a (NLM)34125671 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Souri, Yaser  |e verfasserin  |4 aut 
245 1 0 |a Fast Weakly Supervised Action Segmentation Using Mutual Consistency 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Action segmentation is the task of predicting the actions for each frame of a video. As obtaining the full annotation of videos for action segmentation is expensive, weakly supervised approaches that can learn only from transcripts are appealing. In this paper, we propose a novel end-to-end approach for weakly supervised action segmentation based on a two-branch neural network. The two branches of our network predict two redundant but different representations for action segmentation and we propose a novel mutual consistency (MuCon) loss that enforces the consistency of the two redundant representations. Using the MuCon loss together with a loss for transcript prediction, our proposed approach achieves the accuracy of state-of-the-art approaches while being 14 times faster to train and 20 times faster during inference. The MuCon loss proves beneficial even in the fully supervised setting 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fayyaz, Mohsen  |e verfasserin  |4 aut 
700 1 |a Minciullo, Luca  |e verfasserin  |4 aut 
700 1 |a Francesca, Gianpiero  |e verfasserin  |4 aut 
700 1 |a Gall, Juergen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 14. Okt., Seite 6196-6208  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:14  |g month:10  |g pages:6196-6208 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3089127  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 14  |c 10  |h 6196-6208