Effective Training of Convolutional Neural Networks With Low-Bitwidth Weights and Activations
This paper tackles the problem of training a deep convolutional neural network of both low-bitwidth weights and activations. Optimizing a low-precision network is very challenging due to the non-differentiability of the quantizer, which may result in substantial accuracy loss. To address this, we pr...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 14. Okt., Seite 6140-6152
|
Auteur principal: |
Zhuang, Bohan
(Auteur) |
Autres auteurs: |
Tan, Mingkui,
Liu, Jing,
Liu, Lingqiao,
Reid, Ian,
Shen, Chunhua |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2022
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article
Research Support, Non-U.S. Gov't |