Universal Weighting Metric Learning for Cross-Modal Retrieval

Cross-modal retrieval has recently attracted growing attention, which aims to match instances captured from different modalities. The performance of cross-modal retrieval methods heavily relies on the capability of metric learning to mine and weight the informative pairs. While various metric learni...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 14. Okt., Seite 6534-6545
1. Verfasser: Wei, Jiwei (VerfasserIn)
Weitere Verfasser: Yang, Yang, Xu, Xing, Zhu, Xiaofeng, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM326735224
003 DE-627
005 20231225195234.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3088863  |2 doi 
028 5 2 |a pubmed24n1089.xml 
035 |a (DE-627)NLM326735224 
035 |a (NLM)34125668 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Jiwei  |e verfasserin  |4 aut 
245 1 0 |a Universal Weighting Metric Learning for Cross-Modal Retrieval 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Cross-modal retrieval has recently attracted growing attention, which aims to match instances captured from different modalities. The performance of cross-modal retrieval methods heavily relies on the capability of metric learning to mine and weight the informative pairs. While various metric learning methods have been developed for unimodal retrieval tasks, the cross-modal retrieval tasks, however, have not been explored to its fullest extent. In this paper, we develop a universal weighting metric learning framework for cross-modal retrieval, which can effectively sample informative pairs and assign proper weight values to them based on their similarity scores so that different pairs favor different penalty strength. Based on this framework, we introduce two types of polynomial loss for cross-modal retrieval, self-similarity polynomial loss and relative-similarity polynomial loss. The former provides a polynomial function to associate the weight values with self-similarity scores, and the latter defines a polynomial function to associate the weight values with relative-similarity scores. Both self and relative-similarity polynomial loss can be freely applied to off-the-shelf methods and further improve their retrieval performance. Extensive experiments on two image-text retrieval datasets, three video-text retrieval datasets and one fine-grained image retrieval dataset demonstrate that our proposed method can achieve a noticeable boost in retrieval performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Xu, Xing  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiaofeng  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 14. Okt., Seite 6534-6545  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:14  |g month:10  |g pages:6534-6545 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3088863  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 14  |c 10  |h 6534-6545