Establishing the Suitability of the Model for Prediction Across Scales for Global Retrospective Air Quality Modeling

The U.S. EPA is leveraging recent advances in meteorological modeling to construct an air quality modeling system to allow consistency from global to local scales. The Model for Prediction Across Scales-Atmosphere (MPAS-A or MPAS) has been developed by the National Center for Atmospheric Research (N...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres : JGR. - 1998. - 126(2021), 10 vom: 27. Mai
1. Verfasser: Gilliam, Robert C (VerfasserIn)
Weitere Verfasser: Herwehe, Jerold A, Bullock, O Russell Jr, Pleim, Jonathan E, Ran, Limei, Campbell, Patrick C, Foroutan, Hosein
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of geophysical research. Atmospheres : JGR
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM326715568
003 DE-627
005 20240402233711.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1029/2020jd033588  |2 doi 
028 5 2 |a pubmed24n1360.xml 
035 |a (DE-627)NLM326715568 
035 |a (NLM)34123691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gilliam, Robert C  |e verfasserin  |4 aut 
245 1 0 |a Establishing the Suitability of the Model for Prediction Across Scales for Global Retrospective Air Quality Modeling 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.04.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The U.S. EPA is leveraging recent advances in meteorological modeling to construct an air quality modeling system to allow consistency from global to local scales. The Model for Prediction Across Scales-Atmosphere (MPAS-A or MPAS) has been developed by the National Center for Atmospheric Research (NCAR) as a global complement to the Weather Research and Forecasting model (WRF). Patterned after a regional coupled system with WRF, the Community Multiscale Air Quality (CMAQ) modeling system has been coupled within MPAS to explore global-to-local chemical transport modeling. Several options were implemented into MPAS for retrospective applications. Nudging-based data assimilation was added to support continuous simulations of past weather to minimize error growth that exists with a weather forecast configuration. The Pleim-Xiu land-surface model, the Asymmetric Convective Model 2 boundary layer scheme, and the Pleim surface layer scheme were added as the preferred options for retrospective air quality applications with WRF. Annual simulations were conducted using this EPA-enhanced MPAS configuration on two different mesh structures and compared against WRF. MPAS generally compares well with WRF over the conterminous United States. Errors in MPAS surface meteorology are comparable to WRF throughout the year. Precipitation statistics indicate MPAS performs slightly better than WRF. Solar radiation in MPAS is higher than WRF and measurements, suggesting fewer clouds in MPAS than WRF. Upper-air meteorology is well-simulated by MPAS, but errors are slightly higher than WRF. These comparisons lend confidence to use MPAS for retrospective air quality modeling and suggest ways it can be further improved in the future 
650 4 |a Journal Article 
700 1 |a Herwehe, Jerold A  |e verfasserin  |4 aut 
700 1 |a Bullock, O Russell  |c Jr  |e verfasserin  |4 aut 
700 1 |a Pleim, Jonathan E  |e verfasserin  |4 aut 
700 1 |a Ran, Limei  |e verfasserin  |4 aut 
700 1 |a Campbell, Patrick C  |e verfasserin  |4 aut 
700 1 |a Foroutan, Hosein  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geophysical research. Atmospheres : JGR  |d 1998  |g 126(2021), 10 vom: 27. Mai  |w (DE-627)NLM098183494  |x 2169-897X  |7 nnns 
773 1 8 |g volume:126  |g year:2021  |g number:10  |g day:27  |g month:05 
856 4 0 |u http://dx.doi.org/10.1029/2020jd033588  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 126  |j 2021  |e 10  |b 27  |c 05