Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera : Staphylinidae) at the sublethal concentration

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 30(2021), 6 vom: 11. Aug., Seite 1227-1241
1. Verfasser: Khan, Muhammad Musa (VerfasserIn)
Weitere Verfasser: Khan, Aamir Hamid, Ali, Muhammad Waqar, Hafeez, Muhammad, Ali, Shahbaz, Du, Cailian, Fan, Zeyun, Sattar, Muzammil, Hua, Hongxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Detoxification-related genes Emamectin benzoate Enzymatic analysis Paederus fuscipes Transcriptome analysis Ivermectin 70288-86-7 emamectin benzoate HVM3G4A01W
LEADER 01000naa a22002652 4500
001 NLM326654623
003 DE-627
005 20231225195048.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10646-021-02426-1  |2 doi 
028 5 2 |a pubmed24n1088.xml 
035 |a (DE-627)NLM326654623 
035 |a (NLM)34117552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, Muhammad Musa  |e verfasserin  |4 aut 
245 1 0 |a Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera  |b Staphylinidae) at the sublethal concentration 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2021 
500 |a Date Revised 23.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. 
520 |a In this study, the detoxification enzyme activity and the transcriptional profile changes in the second instar through RNA-sequencing technology due to emamectin benzoate (EB) were assessed. The cytochrome P450 monooxygenases (P450) enzyme activity was not altered by EB due to the change in concentration and exposure time in all treatments. The glutathione S-transferase (GST) enzyme was not considerably varying in all treatments, while exposure time significantly changed the enzyme activity. Results showed that the esterase (Ests) activity was elevated with the increasing concentrations and exposure time. Two libraries were generated, containing 107,767,542 and 108,142,289 clean reads for the samples treated with LC30 of EB and control. These reads were grouped into 218,070 transcripts and 38,097 unigenes. A total of 2257 differentially expressed genes (DEGs) were identified from these unigenes, of which 599 up-regulated and 1658 were down-regulated. The majority of these DEGs related to pesticides resistance were identified in numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, e.g., steroid hormone biosynthesis, glutathione metabolism, drug metabolism-other enzymes, chemical carcinogenesis, pathways of cancer, metabolism of xenobiotics by cytochrome P450, drug metabolism of cytochrome P450, linoleic acid metabolism, retinol metabolism, and insect hormone biosynthesis. These pathways also shared the same genes as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), Esterase (Ests), UDP-glucosyltransferases (UGTs), and ATP-binding cassettes (ABCs). A heatmap analysis also showed that regulation of genes in a pathway causes a series of gene expression regulation in subsequent pathways. Our quantitative reverse transcription-PCR (qRT-PCR) results were consistent with the DEG's data of transcriptome analysis. The comprehensive transcriptome sequence resource attained through this study evidence that the EB induces significant modification in enzyme activity and transcriptome profile of Paederus fuscipes, which may enable more significant molecular underpinnings behind the insecticide-resistance mechanism for further investigations 
650 4 |a Journal Article 
650 4 |a Detoxification-related genes 
650 4 |a Emamectin benzoate 
650 4 |a Enzymatic analysis 
650 4 |a Paederus fuscipes 
650 4 |a Transcriptome analysis 
650 7 |a Ivermectin  |2 NLM 
650 7 |a 70288-86-7  |2 NLM 
650 7 |a emamectin benzoate  |2 NLM 
650 7 |a HVM3G4A01W  |2 NLM 
700 1 |a Khan, Aamir Hamid  |e verfasserin  |4 aut 
700 1 |a Ali, Muhammad Waqar  |e verfasserin  |4 aut 
700 1 |a Hafeez, Muhammad  |e verfasserin  |4 aut 
700 1 |a Ali, Shahbaz  |e verfasserin  |4 aut 
700 1 |a Du, Cailian  |e verfasserin  |4 aut 
700 1 |a Fan, Zeyun  |e verfasserin  |4 aut 
700 1 |a Sattar, Muzammil  |e verfasserin  |4 aut 
700 1 |a Hua, Hongxia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecotoxicology (London, England)  |d 1992  |g 30(2021), 6 vom: 11. Aug., Seite 1227-1241  |w (DE-627)NLM098212214  |x 1573-3017  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g number:6  |g day:11  |g month:08  |g pages:1227-1241 
856 4 0 |u http://dx.doi.org/10.1007/s10646-021-02426-1  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_65 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |e 6  |b 11  |c 08  |h 1227-1241