JPEG Robust Invertible Grayscale

Invertible grayscale is a special kind of grayscale from which the original color can be recovered. Given an input color image, this seminal work tries to hide the color information into its grayscale counterpart while making it hard to recognize any anomalies. This powerful functionality is enabled...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 11. Dez., Seite 4403-4417
Auteur principal: Liu, Kunlin (Auteur)
Autres auteurs: Chen, Dongdong, Liao, Jing, Zhang, Weiming, Zhou, Hang, Zhang, Jie, Zhou, Wenbo, Yu, Nenghai
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM32663536X
003 DE-627
005 20250301213416.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3088531  |2 doi 
028 5 2 |a pubmed25n1088.xml 
035 |a (DE-627)NLM32663536X 
035 |a (NLM)34115588 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Kunlin  |e verfasserin  |4 aut 
245 1 0 |a JPEG Robust Invertible Grayscale 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Invertible grayscale is a special kind of grayscale from which the original color can be recovered. Given an input color image, this seminal work tries to hide the color information into its grayscale counterpart while making it hard to recognize any anomalies. This powerful functionality is enabled by training a hiding sub-network and restoring sub-network in an end-to-end way. Despite its expressive results, two key limitations exist: 1) The restored color image often suffers from some noticeable visual artifacts in the smooth regions. 2) It is very sensitive to JPEG compression, i.e., the original color information cannot be well recovered once the intermediate grayscale image is compressed by JPEG. To overcome these two limitations, this article introduces adversarial training and JPEG simulator respectively. Specifically, two auxiliary adversarial networks are incorporated to make the intermediate grayscale images and final restored color images indistinguishable from normal grayscale and color images. And the JPEG simulator is utilized to simulate real JPEG compression during the online training so that the hiding and restoring sub-networks can automatically learn to be JPEG robust. Extensive experiments demonstrate that the proposed method is superior to the original invertible grayscale work both qualitatively and quantitatively while ensuring the JPEG robustness. We further show that the proposed framework can be applied under different types of grayscale constraints and achieve excellent results 
650 4 |a Journal Article 
700 1 |a Chen, Dongdong  |e verfasserin  |4 aut 
700 1 |a Liao, Jing  |e verfasserin  |4 aut 
700 1 |a Zhang, Weiming  |e verfasserin  |4 aut 
700 1 |a Zhou, Hang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jie  |e verfasserin  |4 aut 
700 1 |a Zhou, Wenbo  |e verfasserin  |4 aut 
700 1 |a Yu, Nenghai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 12 vom: 11. Dez., Seite 4403-4417  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:12  |g day:11  |g month:12  |g pages:4403-4417 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3088531  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 12  |b 11  |c 12  |h 4403-4417