DeriveNet for (Very) Low Resolution Image Classification

Images captured from a distance often result in (very) low resolution (VLR/LR) region of interest, requiring automated identification. VLR/LR images (or regions of interest) often contain less information content, rendering ineffective feature extraction and classification. To this effect, this rese...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 11. Okt., Seite 6569-6577
1. Verfasser: Singh, Maneet (VerfasserIn)
Weitere Verfasser: Nagpal, Shruti, Singh, Richa, Vatsa, Mayank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Images captured from a distance often result in (very) low resolution (VLR/LR) region of interest, requiring automated identification. VLR/LR images (or regions of interest) often contain less information content, rendering ineffective feature extraction and classification. To this effect, this research proposes a novel DeriveNet model for VLR/LR classification, which focuses on learning effective class boundaries by utilizing the class-specific domain knowledge. DeriveNet model is jointly trained via two losses: (i) proposed Derived-Margin softmax loss and (ii) the proposed Reconstruction-Center (ReCent) loss. The Derived-Margin softmax loss focuses on learning an effective VLR classifier while explicitly modeling the inter-class variations. The ReCent loss incorporates domain information by learning a HR reconstruction space for approximating the class variations for the VLR/LR samples. It is utilized to derive inter-class margins for the Derived-Margin softmax loss. The DeriveNet model has been trained with a novel Multi-resolution Pyramid based data augmentation which enables the model to learn from varying resolutions during training. Experiments and analysis have been performed on multiple datasets for (i) VLR/LR face recognition, (ii) VLR digit classification, and (iii) VLR/LR face recognition from drone-shot videos. The DeriveNet model achieves state-of-the-art performance across different datasets, thus promoting its utility for several VLR/LR classification tasks
Beschreibung:Date Completed 16.09.2022
Date Revised 19.11.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3088756