Multi-Stage Degradation Homogenization for Super-Resolution of Face Images With Extreme Degradations

Face Super-Resolution (FSR) aims to infer High-Resolution (HR) face images from the captured Low-Resolution (LR) face image with the assistance of external information. Existing FSR methods are less effective for the LR face images captured with serious low-quality since the huge imaging/degradation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 20., Seite 5600-5612
1. Verfasser: Chen, Liang (VerfasserIn)
Weitere Verfasser: Pan, Jinshan, Jiang, Junjun, Zhang, Jiawei, Han, Zhen, Bao, Linchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326589724
003 DE-627
005 20231225194924.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3086595  |2 doi 
028 5 2 |a pubmed24n1088.xml 
035 |a (DE-627)NLM326589724 
035 |a (NLM)34110993 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Liang  |e verfasserin  |4 aut 
245 1 0 |a Multi-Stage Degradation Homogenization for Super-Resolution of Face Images With Extreme Degradations 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face Super-Resolution (FSR) aims to infer High-Resolution (HR) face images from the captured Low-Resolution (LR) face image with the assistance of external information. Existing FSR methods are less effective for the LR face images captured with serious low-quality since the huge imaging/degradation gap caused by the different imaging scenarios (i.e., the complex practical imaging scenario that generates test LR images, the simple manual imaging degradation that generates the training LR images) is not considered in these algorithms. In this paper, we propose an image homogenization strategy via re-expression to solve this problem. In contrast to existing methods, we propose a homogenization projection in LR space and HR space as compensation for the classical LR/HR projection to formulate the FSR in a multi-stage framework. We then develop a re-expression process to bridge the gap between the complex degradation and the simple degradation, which can remove the heterogeneous factors such as serious noise and blur. To further improve the accuracy of the homogenization, we extract the image patch set that is invariant to degradation changes as Robust Neighbor Resources (RNR), with which these two homogenization projections re-express the input LR images and the initial inferred HR images successively. Both quantitative and qualitative results on the public datasets demonstrate the effectiveness of the proposed algorithm against the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiawei  |e verfasserin  |4 aut 
700 1 |a Han, Zhen  |e verfasserin  |4 aut 
700 1 |a Bao, Linchao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 20., Seite 5600-5612  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:20  |g pages:5600-5612 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3086595  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 20  |h 5600-5612