Lattice Boltzmann Simulations of Multiphase Dielectric Fluids

The dynamic effect of an electric field on dielectric liquids is called liquid dielectrophoresis. It is widely used in several industrial and scientific applications, including inkjet printing, microfabrication, and optical devices. Numerical simulations of liquid-dielectrophoresis are necessary to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 24 vom: 22. Juni, Seite 7328-7340
1. Verfasser: Ruiz-Gutiérrez, Élfego (VerfasserIn)
Weitere Verfasser: Edwards, Andrew M J, McHale, Glen, Newton, Michael I, Wells, Gary G, Brown, Carl V, Ledesma-Aguilar, Rodrigo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The dynamic effect of an electric field on dielectric liquids is called liquid dielectrophoresis. It is widely used in several industrial and scientific applications, including inkjet printing, microfabrication, and optical devices. Numerical simulations of liquid-dielectrophoresis are necessary to understand the fundamental physics of the phenomenon, but also to explore situations that might be difficult or expensive to implement experimentally. However, such modeling is challenging, as one needs to solve the electrostatic and fluid dynamics equations simultaneously. Here, we formulate a new lattice-Boltzmann method capable of modeling the dynamics of immiscible dielectric fluids coupled with electric fields within a single framework, thus eliminating the need of using separate algorithms to solve the electrostatic and fluid dynamics equations. We validate the numerical method by comparing it with analytical solutions and previously reported experimental results. Beyond the benchmarking of the method, we study the spreading of a droplet using a dielectrowetting setup and quantify the mechanism driving the variation of the apparent contact angle of the droplet with the applied voltage. Our method provides a useful tool to study liquid-dielectrophoresis and can be used to model dielectric fluids in general, such as liquid-liquid and liquid-gas systems
Beschreibung:Date Revised 22.06.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00606