Pixel-Wise Wasserstein Autoencoder for Highly Generative Dehazing
We propose a highly generative dehazing method based on pixel-wise Wasserstein autoencoders. In contrast to existing dehazing methods based on generative adversarial networks, our method can produce a variety of dehazed images with different styles. It significantly improves the dehazing accuracy vi...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 04., Seite 5452-5462 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2021
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article |
| Zusammenfassung: | We propose a highly generative dehazing method based on pixel-wise Wasserstein autoencoders. In contrast to existing dehazing methods based on generative adversarial networks, our method can produce a variety of dehazed images with different styles. It significantly improves the dehazing accuracy via pixel-wise matching from hazy to dehazed images through 2-dimensional latent tensors of the Wasserstein autoencoder. In addition, we present an advanced feature fusion technique to deliver rich information to the latent space. For style transfer, we introduce a mapping function that transforms existing latent spaces to new ones. Thus, our method can produce highly generative haze-free images with various tones, illuminations, and moods, which induces several interesting applications, including low-light enhancement, daytime dehazing, nighttime dehazing, and underwater image enhancement. Experimental results demonstrate that our method quantitatively outperforms existing state-of-the-art methods for synthetic and real-world datasets, and simultaneously generates highly generative haze-free images, which are qualitatively diverse |
|---|---|
| Beschreibung: | Date Revised 10.06.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1941-0042 |
| DOI: | 10.1109/TIP.2021.3084743 |