Deep Spectral Representation Learning From Multi-View Data

Multi-view representation learning (MvRL) aims to learn a consensus representation from diverse sources or domains to facilitate downstream tasks such as clustering, retrieval, and classification. Due to the limited representative capacity of the adopted shallow models, most existing MvRL methods ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 5352-5362
1. Verfasser: Huang, Zhenyu (VerfasserIn)
Weitere Verfasser: Zhou, Joey Tianyi, Zhu, Hongyuan, Zhang, Changqing, Lv, Jiancheng, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326299378
003 DE-627
005 20231225194307.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3083072  |2 doi 
028 5 2 |a pubmed24n1087.xml 
035 |a (DE-627)NLM326299378 
035 |a (NLM)34081580 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a Deep Spectral Representation Learning From Multi-View Data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.06.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view representation learning (MvRL) aims to learn a consensus representation from diverse sources or domains to facilitate downstream tasks such as clustering, retrieval, and classification. Due to the limited representative capacity of the adopted shallow models, most existing MvRL methods may yield unsatisfactory results, especially when the labels of data are unavailable. To enjoy the representative capacity of deep learning, this paper proposes a novel multi-view unsupervised representation learning method, termed as Multi-view Laplacian Network (MvLNet), which could be the first deep version of the multi-view spectral representation learning method. Note that, such an attempt is nontrivial because simply combining Laplacian embedding (i.e., spectral representation) with neural networks will lead to trivial solutions. To solve this problem, MvLNet enforces an orthogonal constraint and reformulates it as a layer with the help of Cholesky decomposition. The orthogonal layer is stacked on the embedding network so that a common space could be learned for consensus representation. Compared with numerous recent-proposed approaches, extensive experiments on seven challenging datasets demonstrate the effectiveness of our method in three multi-view tasks including clustering, recognition, and retrieval. The source code could be found at www.pengxi.me 
650 4 |a Journal Article 
700 1 |a Zhou, Joey Tianyi  |e verfasserin  |4 aut 
700 1 |a Zhu, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Changqing  |e verfasserin  |4 aut 
700 1 |a Lv, Jiancheng  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 03., Seite 5352-5362  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:03  |g pages:5352-5362 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3083072  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 03  |h 5352-5362