Deconstructing Categorization in Visualization Recommendation : A Taxonomy and Comparative Study

Visualization recommendation (VisRec) systems provide users with suggestions for potentially interesting and useful next steps during exploratory data analysis. These recommendations are typically organized into categories based on their analytical actions, i.e., operations employed to transition fr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 01. Dez., Seite 4225-4239
1. Verfasser: Lee, Doris Jung-Lin (VerfasserIn)
Weitere Verfasser: Setlur, Vidya, Tory, Melanie, Karahalios, Karrie, Parameswaran, Aditya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326102655
003 DE-627
005 20231225193849.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3085751  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM326102655 
035 |a (NLM)34061748 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Doris Jung-Lin  |e verfasserin  |4 aut 
245 1 0 |a Deconstructing Categorization in Visualization Recommendation  |b A Taxonomy and Comparative Study 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.10.2022 
500 |a Date Revised 15.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Visualization recommendation (VisRec) systems provide users with suggestions for potentially interesting and useful next steps during exploratory data analysis. These recommendations are typically organized into categories based on their analytical actions, i.e., operations employed to transition from the current exploration state to a recommended visualization. However, despite the emergence of a plethora of VisRec systems in recent work, the utility of the categories employed by these systems in analytical workflows has not been systematically investigated. Our article explores the efficacy of recommendation categories by formalizing a taxonomy of common categories and developing a system, Frontier, that implements these categories. Using Frontier, we evaluate workflow strategies adopted by users and how categories influence those strategies. Participants found recommendations that add attributes to enhance the current visualization and recommendations that filter to sub-populations to be comparatively most useful during data exploration. Our findings pave the way for next-generation VisRec systems that are adaptive and personalized via carefully chosen, effective recommendation categories 
650 4 |a Journal Article 
700 1 |a Setlur, Vidya  |e verfasserin  |4 aut 
700 1 |a Tory, Melanie  |e verfasserin  |4 aut 
700 1 |a Karahalios, Karrie  |e verfasserin  |4 aut 
700 1 |a Parameswaran, Aditya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 12 vom: 01. Dez., Seite 4225-4239  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:12  |g day:01  |g month:12  |g pages:4225-4239 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3085751  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 12  |b 01  |c 12  |h 4225-4239