Efficient Low-Rank Semidefinite Programming With Robust Loss Functions

In real-world applications, it is important for machine learning algorithms to be robust against data outliers or corruptions. In this paper, we focus on improving the robustness of a large class of learning algorithms that are formulated as low-rank semi-definite programming (SDP) problems. Traditi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 01. Okt., Seite 6153-6168
1. Verfasser: Yao, Quanming (VerfasserIn)
Weitere Verfasser: Yang, Hansi, Hu, En-Liang, Kwok, James T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326102582
003 DE-627
005 20231225193849.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3085858  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM326102582 
035 |a (NLM)34061741 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Quanming  |e verfasserin  |4 aut 
245 1 0 |a Efficient Low-Rank Semidefinite Programming With Robust Loss Functions 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In real-world applications, it is important for machine learning algorithms to be robust against data outliers or corruptions. In this paper, we focus on improving the robustness of a large class of learning algorithms that are formulated as low-rank semi-definite programming (SDP) problems. Traditional formulations use the square loss, which is notorious for being sensitive to outliers. We propose to replace this with more robust noise models, including the l1-loss and other nonconvex losses. However, the resultant optimization problem becomes difficult as the objective is no longer convex or smooth. To alleviate this problem, we design an efficient algorithm based on majorization-minimization. The crux is on constructing a good optimization surrogate, and we show that this surrogate can be efficiently obtained by the alternating direction method of multipliers (ADMM). By properly monitoring ADMM's convergence, the proposed algorithm is empirically efficient and also theoretically guaranteed to converge to a critical point. Extensive experiments are performed on four machine learning applications using both synthetic and real-world data sets. Results show that the proposed algorithm is not only fast but also has better performance than the state-of-the-arts 
650 4 |a Journal Article 
700 1 |a Yang, Hansi  |e verfasserin  |4 aut 
700 1 |a Hu, En-Liang  |e verfasserin  |4 aut 
700 1 |a Kwok, James T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 01. Okt., Seite 6153-6168  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:01  |g month:10  |g pages:6153-6168 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3085858  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 01  |c 10  |h 6153-6168