Learning by Distillation : A Self-Supervised Learning Framework for Optical Flow Estimation

We present DistillFlow, a knowledge distillation approach to learning optical flow. DistillFlow trains multiple teacher models and a student model, where challenging transformations are applied to the input of the student model to generate hallucinated occlusions as well as less confident prediction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 01. Sept., Seite 5026-5041
1. Verfasser: Liu, Pengpeng (VerfasserIn)
Weitere Verfasser: Lyu, Michael R, King, Irwin, Xu, Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326102523
003 DE-627
005 20231225193849.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3085525  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM326102523 
035 |a (NLM)34061735 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Pengpeng  |e verfasserin  |4 aut 
245 1 0 |a Learning by Distillation  |b A Self-Supervised Learning Framework for Optical Flow Estimation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present DistillFlow, a knowledge distillation approach to learning optical flow. DistillFlow trains multiple teacher models and a student model, where challenging transformations are applied to the input of the student model to generate hallucinated occlusions as well as less confident predictions. Then, a self-supervised learning framework is constructed: confident predictions from teacher models are served as annotations to guide the student model to learn optical flow for those less confident predictions. The self-supervised learning framework enables us to effectively learn optical flow from unlabeled data, not only for non-occluded pixels, but also for occluded pixels. DistillFlow achieves state-of-the-art unsupervised learning performance on both KITTI and Sintel datasets. Our self-supervised pre-trained model also provides an excellent initialization for supervised fine-tuning, suggesting an alternate training paradigm in contrast to current supervised learning methods that highly rely on pre-training on synthetic data. At the time of writing, our fine-tuned models ranked 1st among all monocular methods on the KITTI 2015 benchmark, and outperform all published methods on the Sintel Final benchmark. More importantly, we demonstrate the generalization capability of DistillFlow in three aspects: framework generalization, correspondence generalization and cross-dataset generalization. Our code and models will be available on https://github.com/ppliuboy/DistillFlow 
650 4 |a Journal Article 
700 1 |a Lyu, Michael R  |e verfasserin  |4 aut 
700 1 |a King, Irwin  |e verfasserin  |4 aut 
700 1 |a Xu, Jia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 01. Sept., Seite 5026-5041  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:01  |g month:09  |g pages:5026-5041 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3085525  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 01  |c 09  |h 5026-5041