Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS-COV-2

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 26 vom: 26. Juli, Seite e2008304
1. Verfasser: Moakes, Richard J A (VerfasserIn)
Weitere Verfasser: Davies, Scott P, Stamataki, Zania, Grover, Liam M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article COVID-19 SARS-CoV-2 carrageenan formulation engineering nasal sprays Nasal Sprays Polymers Polysaccharides, Bacterial gellan gum mehr... 7593U09I4D Carrageenan 9000-07-1
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Airborne pathogens pose high risks in terms of both contraction and transmission within the respiratory pathways, particularly the nasal region. However, there is little in the way of adequate intervention that can protect an individual or prevent further spread. This study reports on a nasal formulation with the capacity to combat such challenges, focusing on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Formulation of a polysaccharide-based spray, known for its mucoadhesive properties, is undertaken and it is characterized for its mechanical, spray distribution, and antiviral properties. The ability to engineer key mechanical characteristics such as dynamic yield stresses and high coverage is shown, through systematic understanding of the composite mixture containing both gellan and λ-carrageenan. Furthermore, the spray systems demonstrate highly potent capacities to prevent SARS-CoV-2 infection in Vero cells, resulting in complete inhibition when either treating, the cells, or the virus, prior to challenging for infection. From this data, a mechanism for both prophylaxis and prevention is proposed; where entrapment within a polymeric coating sterically blocks virus uptake into the cells, inactivating the virus, and allowing clearance within the viscous medium. As such, a fully preventative spray is formulated, targeted at protecting the lining of the upper respiratory pathways against SARS-CoV-2
Beschreibung:Date Completed 14.07.2021
Date Revised 28.08.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202008304