Self-assembling Peptide Hydrogels Facilitate Vascularization in Two-Component Scaffolds

One of the major constraints against using polymeric scaffolds as tissue-regenerative matrices is a lack of adequate implant vascularization. Self-assembling peptide hydrogels can sequester small molecules and biological macromolecules, and they can support infiltrating cells in vivo. Here we demons...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996). - 1999. - 422(2021) vom: 11. Okt.
1. Verfasser: Siddiqui, Zain (VerfasserIn)
Weitere Verfasser: Sarkar, Biplab, Kim, Ka Kyung, Kumar, Arjun, Paul, Reshma, Mahajan, Aryan, Grasman, Jonathan M, Yang, Jian, Kumar, Vivek A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Chemical engineering journal (Lausanne, Switzerland : 1996)
Schlagworte:Journal Article acellular scaffolds angiogenesis hydrogel implant vascularization multi-functional scaffolds peptide nanofibers self-assembly tissue regeneration
LEADER 01000caa a22002652c 4500
001 NLM326029761
003 DE-627
005 20250301184726.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cej.2021.130145  |2 doi 
028 5 2 |a pubmed25n1086.xml 
035 |a (DE-627)NLM326029761 
035 |a (NLM)34054331 
035 |a (PII)130145 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Siddiqui, Zain  |e verfasserin  |4 aut 
245 1 0 |a Self-assembling Peptide Hydrogels Facilitate Vascularization in Two-Component Scaffolds 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One of the major constraints against using polymeric scaffolds as tissue-regenerative matrices is a lack of adequate implant vascularization. Self-assembling peptide hydrogels can sequester small molecules and biological macromolecules, and they can support infiltrating cells in vivo. Here we demonstrate the ability of self-assembling peptide hydrogels to facilitate angiogenic sprouting into polymeric scaffolds after subcutaneous implantation. We constructed two-component scaffolds that incorporated microporous polymeric scaffolds and viscoelastic nanoporous peptide hydrogels. Nanofibrous hydrogels modified the biocompatibility and vascular integration of polymeric scaffolds with microscopic pores (pore diameters: 100-250 μm). In spite of similar amphiphilic sequences, charges, secondary structures, and supramolecular nanostructures, two soft hydrogels studied herein had different abilities to aid implant vascularization, but had similar levels of cellular infiltration. The functional difference of the peptide hydrogels was predicted by the difference in the bioactive moieties inserted into the primary sequences of the peptide monomers. Our study highlights the utility of soft supramolecular hydrogels to facilitate host-implant integration and control implant vascularization in biodegradable polyester scaffolds in vivo. Our study provides useful tools in designing multi-component regenerative scaffolds that recapitulate vascularized architectures of native tissues 
650 4 |a Journal Article 
650 4 |a acellular scaffolds 
650 4 |a angiogenesis 
650 4 |a hydrogel 
650 4 |a implant vascularization 
650 4 |a multi-functional scaffolds 
650 4 |a peptide nanofibers 
650 4 |a self-assembly 
650 4 |a tissue regeneration 
700 1 |a Sarkar, Biplab  |e verfasserin  |4 aut 
700 1 |a Kim, Ka Kyung  |e verfasserin  |4 aut 
700 1 |a Kumar, Arjun  |e verfasserin  |4 aut 
700 1 |a Paul, Reshma  |e verfasserin  |4 aut 
700 1 |a Mahajan, Aryan  |e verfasserin  |4 aut 
700 1 |a Grasman, Jonathan M  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Kumar, Vivek A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemical engineering journal (Lausanne, Switzerland : 1996)  |d 1999  |g 422(2021) vom: 11. Okt.  |w (DE-627)NLM098273531  |x 1385-8947  |7 nnas 
773 1 8 |g volume:422  |g year:2021  |g day:11  |g month:10 
856 4 0 |u http://dx.doi.org/10.1016/j.cej.2021.130145  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 422  |j 2021  |b 11  |c 10