Ultrasonic Defect Characterization Using the Scattering Matrix : A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas

Accurate defect characterization is desirable in the ultrasonic nondestructive evaluation as it can provide quantitative information about the defect type and geometry. For defect characterization using ultrasonic arrays, high-resolution images can provide the size and type information if a defect i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 10 vom: 28. Okt., Seite 3143-3155
1. Verfasser: Bai, Long (VerfasserIn)
Weitere Verfasser: Le Bourdais, Florian, Miorelli, Roberto, Calmon, Pierre, Velichko, Alexander, Drinkwater, Bruce W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM325970718
003 DE-627
005 20231225193558.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3084798  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM325970718 
035 |a (NLM)34048342 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Long  |e verfasserin  |4 aut 
245 1 0 |a Ultrasonic Defect Characterization Using the Scattering Matrix  |b A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.11.2021 
500 |a Date Revised 01.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Accurate defect characterization is desirable in the ultrasonic nondestructive evaluation as it can provide quantitative information about the defect type and geometry. For defect characterization using ultrasonic arrays, high-resolution images can provide the size and type information if a defect is relatively large. However, the performance of image-based characterization becomes poor for small defects that are comparable to the wavelength. An alternative approach is to extract the far-field scattering coefficient matrix from the array data and use it for characterization. Defect characterization can be performed based on a scattering matrix database that consists of the scattering matrices of idealized defects with varying parameters. In this article, the problem of characterizing small surface-breaking notches is studied using two different approaches. The first approach is based on the introduction of a general coherent noise model, and it performs characterization within the Bayesian framework. The second approach relies on a supervised machine learning (ML) schema based on a scattering matrix database, which is used as the training set to fit the ML model exploited for the characterization task. It is shown that convolutional neural networks (CNNs) can achieve the best characterization accuracy among the considered ML approaches, and they give similar characterization uncertainty to that of the Bayesian approach if a notch is favorably oriented. The performance of both approaches varied for unfavorably oriented notches, and the ML approach tends to give results with higher variance and lower biases 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Le Bourdais, Florian  |e verfasserin  |4 aut 
700 1 |a Miorelli, Roberto  |e verfasserin  |4 aut 
700 1 |a Calmon, Pierre  |e verfasserin  |4 aut 
700 1 |a Velichko, Alexander  |e verfasserin  |4 aut 
700 1 |a Drinkwater, Bruce W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 10 vom: 28. Okt., Seite 3143-3155  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:68  |g year:2021  |g number:10  |g day:28  |g month:10  |g pages:3143-3155 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3084798  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 10  |b 28  |c 10  |h 3143-3155