Shell Theory : A Statistical Model of Reality

The foundational assumption of machine learning is that the data under consideration is separable into classes; while intuitively reasonable, separability constraints have proven remarkably difficult to formulate mathematically. We believe this problem is rooted in the mismatch between existing stat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 02. Okt., Seite 6438-6453
1. Verfasser: Lin, Wen-Yan (VerfasserIn)
Weitere Verfasser: Liu, Siying, Ren, Changhao, Cheung, Ngai-Man, Li, Hongdong, Matsushita, Yasuyuki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325970610
003 DE-627
005 20231225193557.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3084598  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM325970610 
035 |a (NLM)34048335 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Wen-Yan  |e verfasserin  |4 aut 
245 1 0 |a Shell Theory  |b A Statistical Model of Reality 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The foundational assumption of machine learning is that the data under consideration is separable into classes; while intuitively reasonable, separability constraints have proven remarkably difficult to formulate mathematically. We believe this problem is rooted in the mismatch between existing statistical techniques and commonly encountered data; object representations are typically high dimensional but statistical techniques tend to treat high dimensions a degenerate case. To address this problem, we develop a dedicated statistical framework for machine learning in high dimensions. The framework derives from the observation that object relations form a natural hierarchy; this leads us to model objects as instances of a high dimensional, hierarchal generative processes. Using a distance based statistical technique, also developed in this paper, we show that in such generative processes, instances of each process in the hierarchy, are almost-always encapsulated by a distinctive-shell that excludes almost-all other instances. The result is shell theory, a statistical machine learning framework in which separability constraints (distinctive-shells) are formally derived from the assumed generative process 
650 4 |a Journal Article 
700 1 |a Liu, Siying  |e verfasserin  |4 aut 
700 1 |a Ren, Changhao  |e verfasserin  |4 aut 
700 1 |a Cheung, Ngai-Man  |e verfasserin  |4 aut 
700 1 |a Li, Hongdong  |e verfasserin  |4 aut 
700 1 |a Matsushita, Yasuyuki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 02. Okt., Seite 6438-6453  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:02  |g month:10  |g pages:6438-6453 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3084598  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 02  |c 10  |h 6438-6453