Achieving Stable Patterns in Multicomponent Polymer Thin Films Using Marangoni and van der Waals Forces

Liquid-air interfaces can be deformed by surface-tension gradients to create topography, a phenomenon useful for polymer film patterning. A recently developed method creates these gradients by photochemically patterning a solid polymer film. Heating the film to the liquid state leads to flow driven...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 22 vom: 08. Juni, Seite 6660-6672
1. Verfasser: Usgaonkar, Saurabh Shenvi (VerfasserIn)
Weitere Verfasser: Ellison, Christopher J, Kumar, Satish
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Liquid-air interfaces can be deformed by surface-tension gradients to create topography, a phenomenon useful for polymer film patterning. A recently developed method creates these gradients by photochemically patterning a solid polymer film. Heating the film to the liquid state leads to flow driven by the patterned surface-tension gradients, but capillary leveling and diffusion of surface-active species facilitate eventual dissipation of the topography. However, experiments demonstrate that using blends of high- and low-molar-mass polymers can considerably delay the decay in topography. To gain insight into this observation, we develop a model based on lubrication theory that yields coupled nonlinear partial differential equations describing how the film height and species concentrations evolve with time and space. Incorporation of a nonmonotonic disjoining pressure is found to significantly increase the lifetime of topographical features, making the model predictions qualitatively consistent with experiments. A parametric study reveals the key variables controlling the kinetics of film deformation and provides guidelines for photochemically induced Marangoni patterning of polymer films
Beschreibung:Date Revised 08.06.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00518