Fast-GANFIT : Generative Adversarial Network for High Fidelity 3D Face Reconstruction

A lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of deep convolutional neural networks (DCNNs). In the recent works, the texture features either correspond to components of a linear texture space or are learned by auto-encoder...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 27. Sept., Seite 4879-4893
1. Verfasser: Gecer, Baris (VerfasserIn)
Weitere Verfasser: Ploumpis, Stylianos, Kotsia, Irene, Zafeiriou, Stefanos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM325923116
003 DE-627
005 20231225193456.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3084524  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM325923116 
035 |a (NLM)34043505 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gecer, Baris  |e verfasserin  |4 aut 
245 1 0 |a Fast-GANFIT  |b Generative Adversarial Network for High Fidelity 3D Face Reconstruction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of deep convolutional neural networks (DCNNs). In the recent works, the texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction is still not capable of modeling facial texture with high-frequency details. In this paper, we take a radically different approach and harness the power of generative adversarial networks (GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is, we utilize GANs to train a very powerful facial texture prior from a large-scale 3D texture dataset. Then, we revisit the original 3D Morphable Models (3DMMs) fitting making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. In order to be robust towards initialisation and expedite the fitting process, we propose a novel self-supervised regression based approach. We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ploumpis, Stylianos  |e verfasserin  |4 aut 
700 1 |a Kotsia, Irene  |e verfasserin  |4 aut 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 27. Sept., Seite 4879-4893  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:27  |g month:09  |g pages:4879-4893 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3084524  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 27  |c 09  |h 4879-4893