Structure-Coherent Deep Feature Learning for Robust Face Alignment

In this paper, we propose a structure-coherent deep feature learning method for face alignment. Unlike most existing face alignment methods which overlook the facial structure cues, we explicitly exploit the relation among facial landmarks to make the detector robust to hard cases such as occlusion...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 5313-5326
1. Verfasser: Lin, Chunze (VerfasserIn)
Weitere Verfasser: Zhu, Beier, Wang, Quan, Liao, Renjie, Qian, Chen, Lu, Jiwen, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325872848
003 DE-627
005 20231225193352.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3082319  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM325872848 
035 |a (NLM)34038362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Chunze  |e verfasserin  |4 aut 
245 1 0 |a Structure-Coherent Deep Feature Learning for Robust Face Alignment 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2021 
500 |a Date Revised 30.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a structure-coherent deep feature learning method for face alignment. Unlike most existing face alignment methods which overlook the facial structure cues, we explicitly exploit the relation among facial landmarks to make the detector robust to hard cases such as occlusion and large pose. Specifically, we leverage a landmark-graph relational network to enforce the structural relationships among landmarks. We consider the facial landmarks as structural graph nodes and carefully design the neighborhood to passing features among the most related nodes. Our method dynamically adapts the weights of node neighborhood to eliminate distracted information from noisy nodes, such as occluded landmark point. Moreover, different from most previous works which only tend to penalize the landmarks absolute position during the training, we propose a relative location loss to enhance the information of relative location of landmarks. This relative location supervision further regularizes the facial structure. Our approach considers the interactions among facial landmarks and can be easily implemented on top of any convolutional backbone to boost the performance. Extensive experiments on three popular benchmarks, including WFLW, COFW and 300W, demonstrate the effectiveness of the proposed method. In particular, due to explicit structure modeling, our approach is especially robust to challenging cases resulting in impressive low failure rate on COFW and WFLW datasets. The model and code are publicly available at https://github.com/BeierZhu/Sturcture-Coherency-Face-Alignment 
650 4 |a Journal Article 
700 1 |a Zhu, Beier  |e verfasserin  |4 aut 
700 1 |a Wang, Quan  |e verfasserin  |4 aut 
700 1 |a Liao, Renjie  |e verfasserin  |4 aut 
700 1 |a Qian, Chen  |e verfasserin  |4 aut 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 5313-5326  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:5313-5326 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3082319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 5313-5326