Sugar export from Arabidopsis leaves : actors and regulatory strategies

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 15 vom: 28. Juli, Seite 5275-5284
1. Verfasser: Xu, Qiyu (VerfasserIn)
Weitere Verfasser: Liesche, Johannes
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acclimation carbon allocation phloem loading protein regulation source–sink balance sucrose transporter Arabidopsis Proteins Membrane Transport Proteins mehr... Plant Proteins SWEET11 protein, Arabidopsis SWEET12 protein, Arabidopsis Sugars Sucrose 57-50-1
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Plant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element-companion cell complex of leaf veins. Here, we take a broader view of the various proteins with potential direct influence on the leaf sugar export rate in the model plant Arabidopsis thaliana, helped by the cell type-specific transcriptome data that have recently become available. Furthermore, we integrate current information on the regulation of these potential target proteins. Our analysis identifies putative control points and units of transcriptionally and post-transcriptionally co-regulated genes. Most notable is the potential regulatory unit of sucrose transporters (SUC2, SWEET11, SWEET12, and SUC4) and proton pumps (AHA3 and AVP1). Our analysis can guide future research aimed at understanding the regulatory network controlling leaf sugar export by providing starting points for characterizing regulatory strategies and identifying regulatory factors that link sugar export rate to the major signaling pathways
Beschreibung:Date Completed 09.08.2021
Date Revised 09.08.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab241