Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss birds

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 18 vom: 15. Sept., Seite 4269-4282
1. Verfasser: Briscoe, Natalie J (VerfasserIn)
Weitere Verfasser: Zurell, Damaris, Elith, Jane, König, Christian, Fandos, Guillermo, Malchow, Anne-Kathleen, Kéry, Marc, Schmid, Hans, Guillera-Arroita, Gurutzeta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article detection probability model evaluation multiseason occupancy models predictive performance species distribution models species trends
LEADER 01000naa a22002652 4500
001 NLM325862729
003 DE-627
005 20231225193339.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15723  |2 doi 
028 5 2 |a pubmed24n1086.xml 
035 |a (DE-627)NLM325862729 
035 |a (NLM)34037281 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Briscoe, Natalie J  |e verfasserin  |4 aut 
245 1 0 |a Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss birds 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.08.2021 
500 |a Date Revised 17.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a Predictions of species' current and future ranges are needed to effectively manage species under environmental change. Species ranges are typically estimated using correlative species distribution models (SDMs), which have been criticized for their static nature. In contrast, dynamic occupancy models (DOMs) explicitily describe temporal changes in species' occupancy via colonization and local extinction probabilities, estimated from time series of occurrence data. Yet, tests of whether these models improve predictive accuracy under current or future conditions are rare. Using a long-term data set on 69 Swiss birds, we tested whether DOMs improve the predictions of distribution changes over time compared to SDMs. We evaluated the accuracy of spatial predictions and their ability to detect population trends. We also explored how predictions differed when we accounted for imperfect detection and parameterized models using calibration data sets of different time series lengths. All model types had high spatial predictive performance when assessed across all sites (mean AUC > 0.8), with flexible machine learning SDM algorithms outperforming parametric static and DOMs. However, none of the models performed well at identifying sites where range changes are likely to occur. In terms of estimating population trends, DOMs performed best, particularly for species with strong population changes and when fit with sufficient data, while static SDMs performed very poorly. Overall, our study highlights the importance of considering what aspects of performance matter most when selecting a modelling method for a particular application and the need for further research to improve model utility. While DOMs show promise for capturing range dynamics and inferring population trends when fitted with sufficient data, computational constraints on variable selection and model fitting can lead to reduced spatial accuracy of predictions, an area warranting more attention 
650 4 |a Journal Article 
650 4 |a detection probability 
650 4 |a model evaluation 
650 4 |a multiseason occupancy models 
650 4 |a predictive performance 
650 4 |a species distribution models 
650 4 |a species trends 
700 1 |a Zurell, Damaris  |e verfasserin  |4 aut 
700 1 |a Elith, Jane  |e verfasserin  |4 aut 
700 1 |a König, Christian  |e verfasserin  |4 aut 
700 1 |a Fandos, Guillermo  |e verfasserin  |4 aut 
700 1 |a Malchow, Anne-Kathleen  |e verfasserin  |4 aut 
700 1 |a Kéry, Marc  |e verfasserin  |4 aut 
700 1 |a Schmid, Hans  |e verfasserin  |4 aut 
700 1 |a Guillera-Arroita, Gurutzeta  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 18 vom: 15. Sept., Seite 4269-4282  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:18  |g day:15  |g month:09  |g pages:4269-4282 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15723  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 18  |b 15  |c 09  |h 4269-4282