Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
We study the problem of efficient semantic segmentation of large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we in...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 02. Nov., Seite 8338-8354
|
Auteur principal: |
Hu, Qingyong
(Auteur) |
Autres auteurs: |
Yang, Bo,
Xie, Linhai,
Rosa, Stefano,
Guo, Yulan,
Wang, Zhihua,
Trigoni, Niki,
Markham, Andrew |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2022
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |