Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling

We study the problem of efficient semantic segmentation of large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we in...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 02. Nov., Seite 8338-8354
Auteur principal: Hu, Qingyong (Auteur)
Autres auteurs: Yang, Bo, Xie, Linhai, Rosa, Stefano, Guo, Yulan, Wang, Zhihua, Trigoni, Niki, Markham, Andrew
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article