Nanoengineered Peptide-Based Antimicrobial Conductive Supramolecular Biomaterial for Cardiac Tissue Engineering

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 26 vom: 27. Juli, Seite e2008715
1. Verfasser: Chakraborty, Priyadarshi (VerfasserIn)
Weitere Verfasser: Oved, Hadas, Bychenko, Darya, Yao, Yifei, Tang, Yiming, Zilberzwige-Tal, Shai, Wei, Guanghong, Dvir, Tal, Gazit, Ehud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antibacterial properties biomaterials cardiac tissue engineering hydrogels peptides polyaniline Hydrogels Biocompatible Materials Oligopeptides mehr... Anti-Bacterial Agents arginyl-glycyl-aspartic acid 78VO7F77PN Aniline Compounds DNA 9007-49-2
LEADER 01000caa a22002652 4500
001 NLM325823073
003 DE-627
005 20240725232522.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202008715  |2 doi 
028 5 2 |a pubmed24n1481.xml 
035 |a (DE-627)NLM325823073 
035 |a (NLM)34033154 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chakraborty, Priyadarshi  |e verfasserin  |4 aut 
245 1 0 |a Nanoengineered Peptide-Based Antimicrobial Conductive Supramolecular Biomaterial for Cardiac Tissue Engineering 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.07.2024 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Owing to their dynamic nature and ordered architecture, supramolecular materials strikingly resemble organic components of living systems. Although short-peptide self-assembled nanostructured hydrogels are regarded as intriguing supramolecular materials for biotechnology, their application is often limited due to their low stability and considerable challenge of combining other desirable properties. Herein, a di-Fmoc-based hydrogelator containing the cell-adhesive Arg-Gly-Asp (RGD) fragment that forms a mechanically stable, self-healing hydrogel is designed. Molecular dynamics simulation reveals the presence of RGD segments on the surface of the hydrogel fibers, highlighting their cell adherence capacity. Aiming to impart conductivity, the 3D network of the hydrogel is further nanoengineered by incorporating polyaniline (PAni). The composite hydrogels demonstrate semiconductivity, excellent antibacterial activity, and DNA binding capacity. Cardiac cells grown on the surface of the composite hydrogels form functional synchronized monolayers. Taken together, the combination of these attributes in a single hydrogel suggests it as an exceptional candidate for functional supramolecular biomaterial designed for electrogenic tissue engineering 
650 4 |a Journal Article 
650 4 |a antibacterial properties 
650 4 |a biomaterials 
650 4 |a cardiac tissue engineering 
650 4 |a hydrogels 
650 4 |a peptides 
650 4 |a polyaniline 
650 7 |a Hydrogels  |2 NLM 
650 7 |a Biocompatible Materials  |2 NLM 
650 7 |a Oligopeptides  |2 NLM 
650 7 |a Anti-Bacterial Agents  |2 NLM 
650 7 |a polyaniline  |2 NLM 
650 7 |a arginyl-glycyl-aspartic acid  |2 NLM 
650 7 |a 78VO7F77PN  |2 NLM 
650 7 |a Aniline Compounds  |2 NLM 
650 7 |a DNA  |2 NLM 
650 7 |a 9007-49-2  |2 NLM 
700 1 |a Oved, Hadas  |e verfasserin  |4 aut 
700 1 |a Bychenko, Darya  |e verfasserin  |4 aut 
700 1 |a Yao, Yifei  |e verfasserin  |4 aut 
700 1 |a Tang, Yiming  |e verfasserin  |4 aut 
700 1 |a Zilberzwige-Tal, Shai  |e verfasserin  |4 aut 
700 1 |a Wei, Guanghong  |e verfasserin  |4 aut 
700 1 |a Dvir, Tal  |e verfasserin  |4 aut 
700 1 |a Gazit, Ehud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 26 vom: 27. Juli, Seite e2008715  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:26  |g day:27  |g month:07  |g pages:e2008715 
856 4 0 |u http://dx.doi.org/10.1002/adma.202008715  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 26  |b 27  |c 07  |h e2008715