Advanced Dropout : A Model-Free Methodology for Bayesian Dropout Optimization

Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout technique applies a model-free and easily implement...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 24. Sept., Seite 4605-4625
1. Verfasser: Xie, Jiyang (VerfasserIn)
Weitere Verfasser: Ma, Zhanyu, Lei, Jianjun, Zhang, Guoqiang, Xue, Jing-Hao, Tan, Zheng-Hua, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM325784167
003 DE-627
005 20231225193154.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3083089  |2 doi 
028 5 2 |a pubmed24n1085.xml 
035 |a (DE-627)NLM325784167 
035 |a (NLM)34029187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Jiyang  |e verfasserin  |4 aut 
245 1 0 |a Advanced Dropout  |b A Model-Free Methodology for Bayesian Dropout Optimization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Due to lack of data, overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs). We propose advanced dropout, a model-free methodology, to mitigate overfitting and improve the performance of DNNs. The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate. Specifically, the distribution parameters are optimized by stochastic gradient variational Bayes in order to carry out an end-to-end training. We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets (five small-scale datasets and two large-scale datasets) with various base models. The advanced dropout outperforms all the referred techniques on all the datasets. We further compare the effectiveness ratios and find that advanced dropout achieves the highest one on most cases. Next, we conduct a set of analysis of dropout rate characteristics, including convergence of the adaptive dropout rate, the learned distributions of dropout masks, and a comparison with dropout rate generation without an explicit distribution. In addition, the ability of overfitting prevention is evaluated and confirmed. Finally, we extend the application of the advanced dropout to uncertainty inference, network pruning, text classification, and regression. The proposed advanced dropout is also superior to the corresponding referred methods. Codes are available at https://github.com/PRIS-CV/AdvancedDropout 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Lei, Jianjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Guoqiang  |e verfasserin  |4 aut 
700 1 |a Xue, Jing-Hao  |e verfasserin  |4 aut 
700 1 |a Tan, Zheng-Hua  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 24. Sept., Seite 4605-4625  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:24  |g month:09  |g pages:4605-4625 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3083089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 24  |c 09  |h 4605-4625