Re-Weighting Large Margin Label Distribution Learning for Classification

Label ambiguity has attracted quite some attention among the machine learning community. The latterly proposed Label Distribution Learning (LDL) can handle label ambiguity and has found wide applications in real classification problems. In the training phase, an LDL model is learned first. In the te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 21. Sept., Seite 5445-5459
1. Verfasser: Wang, Jing (VerfasserIn)
Weitere Verfasser: Geng, Xin, Xue, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325682836
003 DE-627
005 20231225192945.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3082623  |2 doi 
028 5 2 |a pubmed24n1085.xml 
035 |a (DE-627)NLM325682836 
035 |a (NLM)34018929 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jing  |e verfasserin  |4 aut 
245 1 0 |a Re-Weighting Large Margin Label Distribution Learning for Classification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Label ambiguity has attracted quite some attention among the machine learning community. The latterly proposed Label Distribution Learning (LDL) can handle label ambiguity and has found wide applications in real classification problems. In the training phase, an LDL model is learned first. In the test phase, the top label(s) in the label distribution predicted by the learned LDL model is (are) then regarded as the predicted label(s). That is, LDL considers the whole label distribution in the training phase, but only the top label(s) in the test phase, which likely leads to objective inconsistency. To avoid such inconsistency, we propose a new LDL method Re-Weighting Large Margin Label Distribution Learning (RWLM-LDL). First, we prove that the expected L1-norm loss of LDL bounds the classification error probability, and thus apply L1-norm loss as the learning metric. Second, re-weighting schemes are put forward to alleviate the inconsistency. Third, large margin is introduced to further solve the inconsistency. The theoretical results are presented to showcase the generalization and discrimination of RWLM-LDL. Finally, experimental results show the statistically superior performance of RWLM-LDL against other comparing methods 
650 4 |a Journal Article 
700 1 |a Geng, Xin  |e verfasserin  |4 aut 
700 1 |a Xue, Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 21. Sept., Seite 5445-5459  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:21  |g month:09  |g pages:5445-5459 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3082623  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 21  |c 09  |h 5445-5459