Enhanced generation of active oxygen species induced by O3 fine bubble formation and its application to organic compound degradation

By using O3 fine bubbles that promote the mass transfer of O3 to the liquid phase and the conversion of the dissolved O3 into active oxygen species with a high oxidation potential, an improved liquid-phase oxidation technique was developed to accelerate the degradation of an organic compound at a co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 43(2022), 24 vom: 25. Okt., Seite 3661-3669
1. Verfasser: Matsumoto, Masakazu (VerfasserIn)
Weitere Verfasser: Wada, Yoshinari, Xu, Kangjian, Onoe, Kaoru, Hiaki, Toshihiko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Ozone bisphenol A fine bubbles gas–liquid interface hydroxyl radical
LEADER 01000naa a22002652 4500
001 NLM325633681
003 DE-627
005 20231225192843.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2021.1931469  |2 doi 
028 5 2 |a pubmed24n1085.xml 
035 |a (DE-627)NLM325633681 
035 |a (NLM)34013837 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Matsumoto, Masakazu  |e verfasserin  |4 aut 
245 1 0 |a Enhanced generation of active oxygen species induced by O3 fine bubble formation and its application to organic compound degradation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a By using O3 fine bubbles that promote the mass transfer of O3 to the liquid phase and the conversion of the dissolved O3 into active oxygen species with a high oxidation potential, an improved liquid-phase oxidation technique was developed to accelerate the degradation of an organic compound at a constant O3 flow rate. By the use of a dielectric-barrier-discharge reactor, O2 was converted into O3 at an O2 flow rate of 0.56 mmol/(L·min), with 5 mol% O2-to-O3 conversion. Using a self-supporting bubble generator, O3 bubbles with an average diameter (dbbl) of 50 µm were continuously supplied into a solution in TBA (OH• scavenger) at 303 K, and the TBA being degraded. For comparison, O3 bubbles with dbbl values of 200-5000 µm were obtained using a dispersing-type generator. It was found that the minimization of bubble diameter accelerated both O3 dissolution, as a consequence of the increase in the gas-liquid interfacial area and the residence time of the bubbles, and enhanced OH• generation, because of the increase in contact probability between dissolved O3 and OH- at the minute gas-liquid interfaces, caused by the accumulation of OH- around the fine bubble surfaces. To ascertain the influence on organic compound degradation of the improved oxidation potential, bisphenol A, as a model compound, was degraded by O3 bubble injection at different dbbl values. Sequentially, the high OH• selectivity obtained by minimizing the bubble diameter can effectively achieve the rapid degradation of organic compounds and intermediates under a constant O3 flow rate 
650 4 |a Journal Article 
650 4 |a Ozone 
650 4 |a bisphenol A 
650 4 |a fine bubbles 
650 4 |a gas–liquid interface 
650 4 |a hydroxyl radical 
700 1 |a Wada, Yoshinari  |e verfasserin  |4 aut 
700 1 |a Xu, Kangjian  |e verfasserin  |4 aut 
700 1 |a Onoe, Kaoru  |e verfasserin  |4 aut 
700 1 |a Hiaki, Toshihiko  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 43(2022), 24 vom: 25. Okt., Seite 3661-3669  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:24  |g day:25  |g month:10  |g pages:3661-3669 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2021.1931469  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 24  |b 25  |c 10  |h 3661-3669