Non-Greedy L21-Norm Maximization for Principal Component Analysis
Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle high-dimensional data. However, due to the high computational complexity of its eigen-decomposition solution, it is hard to apply PCA to the large-scale data with high dimensionality, e.g., millions of dat...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 5277-5286 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |