Non-Greedy L21-Norm Maximization for Principal Component Analysis

Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle high-dimensional data. However, due to the high computational complexity of its eigen-decomposition solution, it is hard to apply PCA to the large-scale data with high dimensionality, e.g., millions of dat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 5277-5286
1. Verfasser: Nie, Feiping (VerfasserIn)
Weitere Verfasser: Tian, Lai, Huang, Heng, Ding, Chris
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article