Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 20 vom: 30. Juli, Seite 1390-1401
1. Verfasser: Casier, Bastien (VerfasserIn)
Weitere Verfasser: Chagas da Silva, Mauricio, Badawi, Michael, Pascale, Fabien, Bučko, Tomáš, Lebègue, Sébastien, Rocca, Dario
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article QM7 and BA10 datasets energy-related properties graph kernel machine learning regression
LEADER 01000naa a22002652 4500
001 NLM325594341
003 DE-627
005 20231225192754.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26550  |2 doi 
028 5 2 |a pubmed24n1085.xml 
035 |a (DE-627)NLM325594341 
035 |a (NLM)34009668 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Casier, Bastien  |e verfasserin  |4 aut 
245 1 0 |a Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a Nowadays, the coupling of electronic structure and machine learning techniques serves as a powerful tool to predict chemical and physical properties of a broad range of systems. With the aim of improving the accuracy of predictions, a large number of representations for molecules and solids for machine learning applications has been developed. In this work we propose a novel descriptor based on the notion of molecular graph. While graphs are largely employed in classification problems in cheminformatics or bioinformatics, they are not often used in regression problem, especially of energy-related properties. Our method is based on a local decomposition of atomic environments and on the hybridization of two kernel functions: a graph kernel contribution that describes the chemical pattern and a Coulomb label contribution that encodes finer details of the local geometry. The accuracy of this new kernel method in energy predictions of molecular and condensed phase systems is demonstrated by considering the popular QM7 and BA10 datasets. These examples show that the hybrid localized graph kernel outperforms traditional approaches such as, for example, the smooth overlap of atomic positions and the Coulomb matrices 
650 4 |a Journal Article 
650 4 |a QM7 and BA10 datasets 
650 4 |a energy-related properties 
650 4 |a graph kernel 
650 4 |a machine learning 
650 4 |a regression 
700 1 |a Chagas da Silva, Mauricio  |e verfasserin  |4 aut 
700 1 |a Badawi, Michael  |e verfasserin  |4 aut 
700 1 |a Pascale, Fabien  |e verfasserin  |4 aut 
700 1 |a Bučko, Tomáš  |e verfasserin  |4 aut 
700 1 |a Lebègue, Sébastien  |e verfasserin  |4 aut 
700 1 |a Rocca, Dario  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 20 vom: 30. Juli, Seite 1390-1401  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:20  |g day:30  |g month:07  |g pages:1390-1401 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26550  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 20  |b 30  |c 07  |h 1390-1401