Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes

For lateral flow immunoassay (LFIA), it is an important challenge to enhance the detection sensitivity to the same level as polymerase chain reaction or enzyme-linked immunosorbent assay to make LFIA pervasive in the field of on-site environmental analysis. We recently demonstrated that the LFIA sen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 21 vom: 01. Juni, Seite 6566-6577
1. Verfasser: Le, The Son (VerfasserIn)
Weitere Verfasser: He, Sizun, Takahashi, Mari, Enomoto, Yasushi, Matsumura, Yasufumi, Maenosono, Shinya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:For lateral flow immunoassay (LFIA), it is an important challenge to enhance the detection sensitivity to the same level as polymerase chain reaction or enzyme-linked immunosorbent assay to make LFIA pervasive in the field of on-site environmental analysis. We recently demonstrated that the LFIA sensitivity is dramatically enhanced by using Pt-nanoparticle-latex nanocomposite beads (Pt-P2VPs) as probes for the detection of the influenza A (H1N1) antigen compared with using conventional Au colloids as probes. Here, to further enhance the LFIA sensitivity using Pt-P2VPs, superparamagnetic iron oxide nanoparticles (SPIONs) were chemically conjugated to Pt-P2VPs (Pt-P2VPSPION) to give them magnetic separation capability (enrichment and/or purification). To investigate the effect of magnetic enrichment on the LFIA sensitivity in a sandwich format, the C-reactive protein (CRP) was chosen as a model analyte and anti-CRP antibody (CRPAb)-conjugated Pt-P2VP@SPION (Pt-P2VP@SPION-CRPAb) beads were used as probes. The visual limit of detection (LOD) of LFIA was successfully lowered by increasing the magnetic enrichment factor φ. The minimum LOD under the present experimental conditions was 0.08 ng/mL for φ = 40, which is 26-fold lower than that of the standard Au-nanoparticle-based LFIA. In theory, the LOD can be unlimitedly decreased by just increasing φ. However, the times required for both the antigen-antibody binding reaction and magnetic separation dramatically increase with φ. We also propose solutions to overcome this drawback
Beschreibung:Date Completed 21.06.2021
Date Revised 21.06.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00905