Collaborative Video Object Segmentation by Multi-Scale Foreground-Background Integration

This paper investigates the principles of embedding learning to tackle the challenging semi-supervised video object segmentation. Unlike previous practices that focus on exploring the embedding learning of foreground object (s), we consider background should be equally treated. Thus, we propose a Co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 18. Sept., Seite 4701-4712
1. Verfasser: Yang, Zongxin (VerfasserIn)
Weitere Verfasser: Wei, Yunchao, Yang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325548897
003 DE-627
005 20231225192658.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3081597  |2 doi 
028 5 2 |a pubmed24n1085.xml 
035 |a (DE-627)NLM325548897 
035 |a (NLM)34003746 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Zongxin  |e verfasserin  |4 aut 
245 1 0 |a Collaborative Video Object Segmentation by Multi-Scale Foreground-Background Integration 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper investigates the principles of embedding learning to tackle the challenging semi-supervised video object segmentation. Unlike previous practices that focus on exploring the embedding learning of foreground object (s), we consider background should be equally treated. Thus, we propose a Collaborative video object segmentation by Foreground-Background Integration (CFBI) approach. CFBI separates the feature embedding into the foreground object region and its corresponding background region, implicitly promoting them to be more contrastive and improving the segmentation results accordingly. Moreover, CFBI performs both pixel-level matching processes and instance-level attention mechanisms between the reference and the predicted sequence, making CFBI robust to various object scales. Based on CFBI, we introduce a multi-scale matching structure and propose an Atrous Matching strategy, resulting in a more robust and efficient framework, CFBI+. We conduct extensive experiments on two popular benchmarks, i.e., DAVIS and YouTube-VOS. Without applying any simulated data for pre-training, our CFBI+ achieves the performance ( J& F) of 82.9 and 82.8 percent, outperforming all the other state-of-the-art methods. Code: https://github.com/z-x-yang/CFBI 
650 4 |a Journal Article 
700 1 |a Wei, Yunchao  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 18. Sept., Seite 4701-4712  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:18  |g month:09  |g pages:4701-4712 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3081597  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 18  |c 09  |h 4701-4712