|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM325514135 |
003 |
DE-627 |
005 |
20231225192613.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c03587
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1085.xml
|
035 |
|
|
|a (DE-627)NLM325514135
|
035 |
|
|
|a (NLM)34000193
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Zhong-Ting
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ecofriendly Microencapsulated Phase-Change Materials with Hybrid Core Materials for Thermal Energy Storage and Flame Retardancy
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Microencapsulated phase-change material (ME-PCM) employing octadecane as a core material has been practiced for thermal-energy-storage (TES) applications in buildings. However, octadecane as a hydrocarbon-based PCM is flammable. Herein, silica-shelled microcapsules (SiO2-MCs) and poly(urea-formaldehyde)-shelled microcapsules (PUF-MCs) were successfully prepared, loaded with octadecane/tributyl phosphate (TBP) as hybrid core materials, which not only exhibited good TES properties but also high-effective flame retardancy. SiO2-MC (ΔHm = 124.6 J g-1 and ΔHc = 124.1 J g-1) showed weaker TES capacity than PUF-MC (ΔHm = 186.8 J g-1, ΔHc = 188.5 J g-1) but better flame retardancy with a lower peak heat-release rate (HRRpeak) of 460.9 W g-1 (556.9 W g-1 for PUF-MCs). As compared with octadecane (38.7 kJ g-1), the reduction in total heat release (THR) for SiO2-MC was up to 22% (30.1 kJ g-1) with combustion time shortened by 1/6. SiO2-MC had a typical diameter of 150-210 μm, shell thickness of ∼6.5 μm, and a core fraction of 84 wt %. SiO2-MC showed better thermal stability with a higher initial evaporation/pyrolysis temperature than PUF-MC. The thermal decomposition of MCs with its mechanism of flame retardancy was significantly studied using thermogravimetric analysis/infrared spectrometry (TG-IR). The strategy presented in this study should inspire the development of microcapsules with PCMs/flame retardants as hybrid core materials for structural applications
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Reinack, Varghese Hansen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a An, Jinliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Indraneel, Zope
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dasari, Aravind
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jinglei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, En-Hua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 37(2021), 21 vom: 01. Juni, Seite 6380-6387
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:37
|g year:2021
|g number:21
|g day:01
|g month:06
|g pages:6380-6387
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c03587
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 37
|j 2021
|e 21
|b 01
|c 06
|h 6380-6387
|