Bimodal AFM-Based Nanocharacterization of Cycling-Induced Topographic and Mechanical Evolutions of LiMn2O4 Cathode Films

Evolution of LiMn2O4 mechanical property during charge/discharge cycles is a critical issue because it is closely related to the performance of lithium-ion batteries. Extensive studies have been conducted by first-principles calculations/molecular dynamics simulation at the atomic level and by the n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 21 vom: 01. Juni, Seite 6406-6413
1. Verfasser: Yang, Peifa (VerfasserIn)
Weitere Verfasser: Bi, Zhuanfang, Shang, Yang, Chen, Ke, Liang, Yaowen, Li, Xiao, Shang, Guangyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325508720
003 DE-627
005 20231225192602.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c00325  |2 doi 
028 5 2 |a pubmed24n1084.xml 
035 |a (DE-627)NLM325508720 
035 |a (NLM)33999641 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Peifa  |e verfasserin  |4 aut 
245 1 0 |a Bimodal AFM-Based Nanocharacterization of Cycling-Induced Topographic and Mechanical Evolutions of LiMn2O4 Cathode Films 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Evolution of LiMn2O4 mechanical property during charge/discharge cycles is a critical issue because it is closely related to the performance of lithium-ion batteries. Extensive studies have been conducted by first-principles calculations/molecular dynamics simulation at the atomic level and by the nanoindentation technique at the micron scale. In this study, cycling-induced topographic and mechanical evolutions of the LiMn2O4 films are investigated at the nanoscale using the bimodal atomic force microscopy (AFM), which provides a complementary approach to bridge the gap between atomic-level calculation and micron-scale measurement. The topographic change and elastic modulus degradation of the LiMn2O4 films during the charge/discharge cycles are found to occur simultaneously and irreversibly. Moreover, a dramatic decrease in the elastic modulus of the films takes place at the first 10 cycles, which is consistent with the significant loss of the capacity and the change of the Coulombic efficiency measured by the galvanostatic method. By considering the nanoscale phenomena and the macroscopic measurement results, the reasons for the elastic modulus degradation are discussed. This study would be a valuable addition to a better understanding of the degradation mechanisms of this cathode material 
650 4 |a Journal Article 
700 1 |a Bi, Zhuanfang  |e verfasserin  |4 aut 
700 1 |a Shang, Yang  |e verfasserin  |4 aut 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Liang, Yaowen  |e verfasserin  |4 aut 
700 1 |a Li, Xiao  |e verfasserin  |4 aut 
700 1 |a Shang, Guangyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 21 vom: 01. Juni, Seite 6406-6413  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:21  |g day:01  |g month:06  |g pages:6406-6413 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c00325  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 21  |b 01  |c 06  |h 6406-6413