Bimodal AFM-Based Nanocharacterization of Cycling-Induced Topographic and Mechanical Evolutions of LiMn2O4 Cathode Films

Evolution of LiMn2O4 mechanical property during charge/discharge cycles is a critical issue because it is closely related to the performance of lithium-ion batteries. Extensive studies have been conducted by first-principles calculations/molecular dynamics simulation at the atomic level and by the n...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 37(2021), 21 vom: 01. Juni, Seite 6406-6413
Auteur principal: Yang, Peifa (Auteur)
Autres auteurs: Bi, Zhuanfang, Shang, Yang, Chen, Ke, Liang, Yaowen, Li, Xiao, Shang, Guangyi
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:Evolution of LiMn2O4 mechanical property during charge/discharge cycles is a critical issue because it is closely related to the performance of lithium-ion batteries. Extensive studies have been conducted by first-principles calculations/molecular dynamics simulation at the atomic level and by the nanoindentation technique at the micron scale. In this study, cycling-induced topographic and mechanical evolutions of the LiMn2O4 films are investigated at the nanoscale using the bimodal atomic force microscopy (AFM), which provides a complementary approach to bridge the gap between atomic-level calculation and micron-scale measurement. The topographic change and elastic modulus degradation of the LiMn2O4 films during the charge/discharge cycles are found to occur simultaneously and irreversibly. Moreover, a dramatic decrease in the elastic modulus of the films takes place at the first 10 cycles, which is consistent with the significant loss of the capacity and the change of the Coulombic efficiency measured by the galvanostatic method. By considering the nanoscale phenomena and the macroscopic measurement results, the reasons for the elastic modulus degradation are discussed. This study would be a valuable addition to a better understanding of the degradation mechanisms of this cathode material
Description:Date Revised 01.06.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00325