|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM325392919 |
003 |
DE-627 |
005 |
20240725232511.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202007073
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1481.xml
|
035 |
|
|
|a (DE-627)NLM325392919
|
035 |
|
|
|a (NLM)33987928
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Qingyuan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Surface Wettability of Nanoparticle Modulated Sonothrombolysis
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.07.2024
|
500 |
|
|
|a Date Revised 24.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Sonodynamic therapy (SDT) is a non-invasive and highly penetrating treatment strategy under ultrasound irradiation. However, uncertainty in the mechanism of SDT has seriously hindered its future clinical application. Here, the mechanism of SDT enhanced by the wettability of nanoparticles is investigated. Nanoparticles can adsorb and stabilize nanobubbles in liquid, thus enhancing SDT efficiency. The stability of the nanobubbles is positively correlated with the desorption energy of the nanoparticles, which is determined by the wettability of the nanoparticles. This conclusion is verified for mesoporous silica and polystyrene nanoparticles and it is found that nanoparticles with a water contact angle of about 90° possess the largest desorption energy. To further apply this conclusion, thrombus models are constructed on rats and the experimental results demonstrate that nanoparticles with the largest desorption energy have the highest thrombolytic efficiency. It is believed that these findings will help to better understand the SDT mechanism and guide new strategies for rational design of nanoparticles adopted in SDT
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a reactive oxygen species
|
650 |
|
4 |
|a silica nanoparticles
|
650 |
|
4 |
|a sonodynamic mechanism
|
650 |
|
4 |
|a sonothrombolysis
|
650 |
|
4 |
|a wettability
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
650 |
|
7 |
|a Polystyrenes
|2 NLM
|
700 |
1 |
|
|a Zhang, Fengrong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Xueting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Zhijun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Zhijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Hongyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Xiaolu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Lixin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Dongsheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Huiyu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 25 vom: 13. Juni, Seite e2007073
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:25
|g day:13
|g month:06
|g pages:e2007073
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202007073
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 25
|b 13
|c 06
|h e2007073
|