Tweaking Deep Neural Networks

Deep neural networks are trained so as to achieve a kind of the maximum overall accuracy through a learning process using given training data. Therefore, it is difficult to fix them to improve the accuracies of specific problematic classes or classes of interest that may be valuable to some users or...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 01. Sept., Seite 5715-5728
1. Verfasser: Kim, Jinwook (VerfasserIn)
Weitere Verfasser: Yoon, Heeyong, Kim, Min-Soo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM325307180
003 DE-627
005 20231225192150.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3079511  |2 doi 
028 5 2 |a pubmed24n1084.xml 
035 |a (DE-627)NLM325307180 
035 |a (NLM)33979278 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jinwook  |e verfasserin  |4 aut 
245 1 0 |a Tweaking Deep Neural Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deep neural networks are trained so as to achieve a kind of the maximum overall accuracy through a learning process using given training data. Therefore, it is difficult to fix them to improve the accuracies of specific problematic classes or classes of interest that may be valuable to some users or applications. To address this issue, we propose the synaptic join method to tweak neural networks by adding certain additional synapses from the intermediate hidden layers to the output layer across layers and additionally training only these synapses, if necessary. To select the most effective synapses, the synaptic join method evaluates the performance of all the possible candidate synapses between the hidden neurons and output neurons based on the distribution of all the possible proper weights. The experimental results show that the proposed method can effectively improve the accuracies of specific classes in a controllable way 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yoon, Heeyong  |e verfasserin  |4 aut 
700 1 |a Kim, Min-Soo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 01. Sept., Seite 5715-5728  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:01  |g month:09  |g pages:5715-5728 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3079511  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 01  |c 09  |h 5715-5728