Modeling UV-Vis spectra of low dimensional materials using electrostatic embedding : The case of CdSe

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 17 vom: 30. Juni, Seite 1212-1224
1. Verfasser: Luise, Davide (VerfasserIn)
Weitere Verfasser: Wilbraham, Liam, Labat, Frédéric, Ciofini, Ilaria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article electrostatic embedding low dimensional materials periodic systems time dependent density functional theory
LEADER 01000naa a22002652 4500
001 NLM325304467
003 DE-627
005 20231225192147.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26534  |2 doi 
028 5 2 |a pubmed24n1084.xml 
035 |a (DE-627)NLM325304467 
035 |a (NLM)33978978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luise, Davide  |e verfasserin  |4 aut 
245 1 0 |a Modeling UV-Vis spectra of low dimensional materials using electrostatic embedding  |b The case of CdSe 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a We present a generalization of a self-consistent electrostatic embedding approach (SC-Ewald) devised to investigate the photophysical properties of 3D periodic materials, to systems in one- or two-dimensional (2D) reduced periodicity. In this approach, calculations are carried out on a small finite molecular cluster extracted from a periodic model, while the crystalline environment is accounted for by an array of point charges which are fitted to reproduce the exact electrostatic potential (at ground or the excited state) of the infinite periodic system. Periodic density functional theory (DFT) calculations are combined with time dependent DFT calculations to simulate absorption and emission properties of the extended system under investigation. We apply this method to compute the UV-Vis. spectra of bulk and quantum-confined 0D quantum dots and 2D extended nanoplatelets of CdSe, due to their relevance as sensitizers in solar cells technologies. The influence of the size and shape of the finite cluster model chosen in the excited state calculations was also investigated and revealed that, although the long-range electrostatics of the environment are important for the calculation of the UV-Vis, a subtle balance between short- and long-range effects exists. These encouraging results demonstrate that this self-consistent electrostatic embedding approach, when applied in different dimensions, can successfully model the photophysical properties of diverse material classes, making it an attractive low-cost alternative to far more computationally demanding electronic structure methods for excited state calculations 
650 4 |a Journal Article 
650 4 |a electrostatic embedding 
650 4 |a low dimensional materials 
650 4 |a periodic systems 
650 4 |a time dependent density functional theory 
700 1 |a Wilbraham, Liam  |e verfasserin  |4 aut 
700 1 |a Labat, Frédéric  |e verfasserin  |4 aut 
700 1 |a Ciofini, Ilaria  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 17 vom: 30. Juni, Seite 1212-1224  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:17  |g day:30  |g month:06  |g pages:1212-1224 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26534  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 17  |b 30  |c 06  |h 1212-1224