A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 13 vom: 22. Juni, Seite 4691-4707
1. Verfasser: Wan, Liang (VerfasserIn)
Weitere Verfasser: Zhu, Jiangpeng, Du, Xiaoyue, Zhang, Jiafei, Han, Xiongzhe, Zhou, Weijun, Li, Xiaopeng, Liu, Jianli, Liang, Fei, He, Yong, Cen, Haiyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Canopy coverage PROSAIL-GP model drone leaf angle distribution leaf area index multispectral images unmanned aerial vehicle
LEADER 01000caa a22002652c 4500
001 NLM325150656
003 DE-627
005 20250301151331.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erab194  |2 doi 
028 5 2 |a pubmed25n1083.xml 
035 |a (DE-627)NLM325150656 
035 |a (NLM)33963382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Liang  |e verfasserin  |4 aut 
245 1 2 |a A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.08.2021 
500 |a Date Revised 09.08.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Fractional vegetation cover (FVC) is the key trait of interest for characterizing crop growth status in crop breeding and precision management. Accurate quantification of FVC among different breeding lines, cultivars, and growth environments is challenging, especially because of the large spatiotemporal variability in complex field conditions. This study presents an ensemble modeling strategy for phenotyping crop FVC from unmanned aerial vehicle (UAV)-based multispectral images by coupling the PROSAIL model with a gap probability model (PROSAIL-GP). Seven field experiments for four main crops were conducted, and canopy images were acquired using a UAV platform equipped with RGB and multispectral cameras. The PROSAIL-GP model successfully retrieved FVC in oilseed rape (Brassica napus L.) with coefficient of determination, root mean square error (RMSE), and relative RMSE (rRMSE) of 0.79, 0.09, and 18%, respectively. The robustness of the proposed method was further examined in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and cotton (Gossypium hirsutum L.), and a high accuracy of FVC retrieval was obtained, with rRMSEs of 12%, 6%, and 6%, respectively. Our findings suggest that the proposed method can efficiently retrieve crop FVC from UAV images at a high spatiotemporal domain, which should be a promising tool for precision crop breeding 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Canopy coverage 
650 4 |a PROSAIL-GP model 
650 4 |a drone 
650 4 |a leaf angle distribution 
650 4 |a leaf area index 
650 4 |a multispectral images 
650 4 |a unmanned aerial vehicle 
700 1 |a Zhu, Jiangpeng  |e verfasserin  |4 aut 
700 1 |a Du, Xiaoyue  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiafei  |e verfasserin  |4 aut 
700 1 |a Han, Xiongzhe  |e verfasserin  |4 aut 
700 1 |a Zhou, Weijun  |e verfasserin  |4 aut 
700 1 |a Li, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Liu, Jianli  |e verfasserin  |4 aut 
700 1 |a Liang, Fei  |e verfasserin  |4 aut 
700 1 |a He, Yong  |e verfasserin  |4 aut 
700 1 |a Cen, Haiyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 72(2021), 13 vom: 22. Juni, Seite 4691-4707  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:72  |g year:2021  |g number:13  |g day:22  |g month:06  |g pages:4691-4707 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erab194  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2021  |e 13  |b 22  |c 06  |h 4691-4707