Consistency Graph Modeling for Semantic Correspondence

To establish robust semantic correspondence between images covering different objects belonging to the same category, there are three important types of information including inter-image relationship, intra-image relationship and cycle consistency. Most existing methods only exploit one or two types...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 20., Seite 4932-4946
1. Verfasser: He, Jianfeng (VerfasserIn)
Weitere Verfasser: Zhang, Tianzhu, Zheng, Yuhui, Xu, Mingliang, Zhang, Yongdong, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325133786
003 DE-627
005 20231225191806.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3077138  |2 doi 
028 5 2 |a pubmed24n1083.xml 
035 |a (DE-627)NLM325133786 
035 |a (NLM)33961558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Jianfeng  |e verfasserin  |4 aut 
245 1 0 |a Consistency Graph Modeling for Semantic Correspondence 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To establish robust semantic correspondence between images covering different objects belonging to the same category, there are three important types of information including inter-image relationship, intra-image relationship and cycle consistency. Most existing methods only exploit one or two types of the above information and cannot make them enhance and complement each other. Different from existing methods, we propose a novel end-to-end Consistency Graph Modeling Network (CGMNet) for semantic correspondence by modeling inter-image relationship, intra-image relationship and cycle consistency jointly in a unified deep model. The proposed CGMNet enjoys several merits. First, to the best of our knowledge, this is the first work to jointly model the three kinds of information in a deep model for semantic correspondence. Second, our model has designed three effective modules including cross-graph module, intra-graph module and cycle consistency module, which can jointly learn more discriminative feature representations robust to local ambiguities and background clutter for semantic correspondence. Extensive experimental results show that our algorithm performs favorably against state-of-the-art methods on four challenging datasets including PF-PASCAL, PF-WILLOW, Caltech-101 and TSS 
650 4 |a Journal Article 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Zheng, Yuhui  |e verfasserin  |4 aut 
700 1 |a Xu, Mingliang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongdong  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 20., Seite 4932-4946  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:20  |g pages:4932-4946 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3077138  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 20  |h 4932-4946