|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM325118981 |
003 |
DE-627 |
005 |
20231225191747.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202100608
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1083.xml
|
035 |
|
|
|a (DE-627)NLM325118981
|
035 |
|
|
|a (NLM)33960042
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Chen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Lotus-Root-Like Carbon Fibers Embedded with Ni-Co Nanoparticles for Dendrite-Free Lithium Metal Anodes
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The growth of lithium (Li) dendrites and the huge volume change are the critical issues for the practical applications of Li-metal anodes. In this work, a spatial control strategy is proposed to address the above challenges using lotus-root-like Ni-Co hollow prismscarbon fibers (NCH@CFs) as the host. The homogeneously distributed bimetallic Ni-Co particles on the N-doped carbon fibers serve as nucleation sites to effectively reduce the overpotential for Li nucleation. Furthermore, the 3D conductive network can alter the electric field. More importantly, the hierarchical lotus-root-like hollow fibers provide sufficient void space to withstand the volume expansion during Li deposition. These structural features guide the uniform Li nucleation and non-dendritic growth. As a result, the NCH@CFs host enables a very stable Li metal anode with a low voltage hysteresis during repeated Li plating/stripping for 1200 h at a current density of 1 mA cm-2
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon
|
650 |
|
4 |
|a hollow structures
|
650 |
|
4 |
|a lithiophilic nucleation sites
|
650 |
|
4 |
|a lithium dendrite suppression
|
650 |
|
4 |
|a spatial control
|
700 |
1 |
|
|a Guan, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Nian Wu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Yue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luan, Deyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Cai Hong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Guang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Le
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lou, Xiong Wen David
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 24 vom: 06. Juni, Seite e2100608
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:24
|g day:06
|g month:06
|g pages:e2100608
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202100608
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 24
|b 06
|c 06
|h e2100608
|