Polarons and Charge Localization in Metal-Halide Semiconductors for Photovoltaic and Light-Emitting Devices

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 24 vom: 20. Juni, Seite e2007057
1. Verfasser: Buizza, Leonardo R V (VerfasserIn)
Weitere Verfasser: Herz, Laura M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review charge-carrier localization metal halides optoelectronic devices perovskites polarons semiconducting materials
LEADER 01000naa a22002652 4500
001 NLM325076839
003 DE-627
005 20231225191654.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202007057  |2 doi 
028 5 2 |a pubmed24n1083.xml 
035 |a (DE-627)NLM325076839 
035 |a (NLM)33955594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Buizza, Leonardo R V  |e verfasserin  |4 aut 
245 1 0 |a Polarons and Charge Localization in Metal-Halide Semiconductors for Photovoltaic and Light-Emitting Devices 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Metal-halide semiconductors have shown excellent performance in optoelectronic applications such as solar cells, light-emitting diodes, and detectors. In this review the role of charge-lattice interactions and polaron formation in a wide range of these promising materials, including perovskites, double perovskites, Ruddlesden-Popper layered perovskites, nanocrystals, vacancy-ordered, and other novel structures, is summarized. The formation of Fröhlich-type "large" polarons in archetypal bulk metal-halide ABX3 perovskites and its dependence on A-cation, B-metal, and X-halide composition, which is now relatively well understood, are discussed. It is found that, for nanostructured and novel metal-halide materials, a larger variation in the strengths of polaronic effects is reported across the literature, potentially deriving from variations in potential barriers and the presence of interfaces at which lattice relaxation may be enhanced. Such findings are further discussed in the context of different experimental approaches used to explore polaronic effects, cautioning that firm conclusions are often hampered by the presence of alternate processes and interactions giving rise to similar experimental signatures. Overall, a complete understanding of polaronic effects will prove essential given their direct influence on optoelectronic properties such as charge-carrier mobilities and emission spectra, which are critical to the performance of energy and optoelectronic applications 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a charge-carrier localization 
650 4 |a metal halides 
650 4 |a optoelectronic devices 
650 4 |a perovskites 
650 4 |a polarons 
650 4 |a semiconducting materials 
700 1 |a Herz, Laura M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 24 vom: 20. Juni, Seite e2007057  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:24  |g day:20  |g month:06  |g pages:e2007057 
856 4 0 |u http://dx.doi.org/10.1002/adma.202007057  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 24  |b 20  |c 06  |h e2007057