|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM325035504 |
| 003 |
DE-627 |
| 005 |
20250301144441.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
231225s2021 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1021/acs.langmuir.1c00499
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1083.xml
|
| 035 |
|
|
|a (DE-627)NLM325035504
|
| 035 |
|
|
|a (NLM)33950691
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Gowrisankar, Aruchamy
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Anchoring γ-MnO2 within β-NiCo(OH)2 as an Interfacial Electrode Material for Boosting Power Density in an Asymmetric Supercapacitor Device and for Oxygen Evolution Catalysis
|
| 264 |
|
1 |
|c 2021
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 18.05.2021
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a The great challenge is to improve the high-competence electrochemical supercapacitor (ES) and oxygen evolution reaction (OER) electrocatalyst with earth-abundant transition metals rather than using limited noble metals. Herein, we developed a facile strategy to introduce two different phases such as α-MnO2 or γ-MnO2 on porous hexagonal bimetallic β-NiCo(OH)2-layered double hydroxide (LDH) nanosheets for an enhanced bifunctionality and to ease out interfacial redox reaction kinetics. Due to the rational intend of LDH morphology and well-retained starlike γ-MnO2 nanostructures, the bifunctional LDHs exhibit commendable activities toward ESs and in the OER study. Importantly, the γ-MnO2 phase loaded at β-NiCo(OH)2 LDHs shows superior ESs or electrocatalytic OER performance in comparison with the α-MnO2 phase on LDHs. Besides, the assembled fabricated asymmetric supercapacitor (FASC) device possesses convincing energy (24.43 W h/kg) and power densities (5312 W/kg) and enabled us to glow a 1.4 V light-emitting diode for 45 s. Accordingly, three-/two-electrode systems or the solid-state FASC device has exhibited high efficiency in ESs. Also, the optimized γ-MnO2 phase on β-NiCo(OH)2 LDHs with the detailed mass ratio of Ni and Co has displayed the OER performance comparable to commercial RuO2. The electrochemical studies and structural classifications offer in-depth analysis on the electrochemical behaviors, especially the stability in both ES and OER studies, signifying a promising aspirant in the alternative energy field
|
| 650 |
|
4 |
|a Journal Article
|
| 700 |
1 |
|
|a Selvaraju, Thangavelu
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1985
|g 37(2021), 19 vom: 18. Mai, Seite 5964-5978
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnas
|
| 773 |
1 |
8 |
|g volume:37
|g year:2021
|g number:19
|g day:18
|g month:05
|g pages:5964-5978
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.1c00499
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_22
|
| 912 |
|
|
|a GBV_ILN_350
|
| 912 |
|
|
|a GBV_ILN_721
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 37
|j 2021
|e 19
|b 18
|c 05
|h 5964-5978
|