Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels

Aerogel is a kind of high-performance lightweight open-porous solids with ultralow density, high specific surface area, and broad application in many emerging fields including biotechnology, energy, environment, aerospace, etc. A giant challenge remains in preventing of the hydrophilic aerogel frame...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 19 vom: 18. Mai, Seite 5923-5931
1. Verfasser: Wang, Jinpei (VerfasserIn)
Weitere Verfasser: Du, Yu, Wang, Jin, Gong, Wenbin, Xu, Liang, Yan, Lifeng, You, Yezi, Lu, Weibang, Zhang, Xuetong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Aerogel is a kind of high-performance lightweight open-porous solids with ultralow density, high specific surface area, and broad application in many emerging fields including biotechnology, energy, environment, aerospace, etc. A giant challenge remains in preventing of the hydrophilic aerogel framework shrinkage when replacing of solvent with air in its extremely abundant nanosized pores during its fabrication process in ambient conditions. In this work, started from a linear polymeric precursor with further condensation reaction, superhydrophilic silica aerogels with self-reinforced microstructure and the least volume shrinkage have been successfully obtained via ambient pressure drying process without use of any additives in the presence of a low surface tension solvent. The resulting superhydrophilic silica aerogels possess specific surface area up to 1065 m2/g, pore volume up to 2.17 cm3/g and density down to 84 mg/cm3, and these values are comparable to those of their counterparts obtained by supercritical CO2 drying process. Moreover, as an application demonstration, the bioinspired hydrogels with desirable mechanical flexibility and adhesive performance at extremely harsh environment (e.g., below -50 °C) have been successfully synthesized by mimicking carrier of a functional bioagent with the resulting superhydrophilic silica aerogel microparticles. Our work has made a significant step forward for future high-performance hydrophilic aerogels with self-enhanced microstructures and the resulting superhydrophilic aerogels have shown great potentials in making functional hydrogels with bionic properties
Beschreibung:Date Completed 02.06.2021
Date Revised 02.06.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00476